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Preface

The days when a single researdher, working alone in a laboratory could make

great contributions to his or her field have past. Those days are part of a bygone era

or perhaps never existed at all. Great accomplishment today is the result of team

efforts, each individual striving to make a contributiou by fitting a. small piece into a

larger puzzle. This work contains the small piece of the puzzle I have worked on. Such

work would not be meaningful or useful without strong leadership and direction from

real giants. Dr. Steven K. Rogers, Dr. Matthew Kabrisky and Major Phil Amburn

provided that leadership. I would like to acknowledge my appreciation for their help

and support. Many thanks to my thesis ad-'isor, Dr. Steven K. Rogers, for his

encouragement and enthusiasm. I would also like to thank Dr. Matthew Kabrisky

and Dr. Phil Amburn for their assistance and advice throughout the research effort.p|
Sir Isaac Newton once said "If I have seen farther than other men it is because

I have stood on the shoulders of giants". If I have seen at all, it is because I peered

over the shoulders of giants.

Gregory L. Tarr
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Abstract

An environment is developed for the study of dynamic changes in patterns of

weight and node values for artificial neural networks. Graphic representations of

neural network internal states are displayed using a high resolution video terminal.

Patterns of node firings and r-hanges in weight vectors are displayed to provide in-

sight during training. Four pattern recognition problems are applied to four types

of artificial neural networks. U,-iug simulated data, a simple disjoint region clas.i-"

fication problem is developed and examined using a Kohonen net and a multilayer

feedforward back propagation (MFB) network.

A MF8 neural network is also used to simulate a Fourier filter. Using a Koho-

nen net, a MFB, a counterpropagation and a hybrid network, data measured from

infrared and laser radar imagery of military vehicles is analyzed. The accuracy and

training times for a MFB net and a Hybrid net are compared using an ambiguous

decision regio'.u problem. Each classification problem is examined and compared to

classical, nearest neighbor pattern recognition techniques. Using dynamic analysis,

neuril network pru.iing is used to determine optimum node configurations. A hybrid

neural netwcrk is derveloped using Kohonc- training rules for the first hidden layer

followed by one or two hidden layers using standard back propagation ruies for train-

ing. Advantag, of the hybrid network is shown for classification problems involving

anomalies characteristic of measured data. The Hybrid network requires less train-

ing and fewer interconnections than MFB when classifications involves ambiguous

decision regions.

ix

..............................



DYNAMIC ANALYSIS OF

FEEDFORWARD NEURAL NETWORKS

USING SIMULATED AND MEASURED DATA

L Introduction

Autonomous military target detection and classification from electronic im-

agery is a topic of great importance to the Department of Defense. The solution to

the problem may lie in one of several implementations of artificial neural networks.

Several topologies for neural networks have been proposed, each of which provide

a solution for a narrow class of pattern recognition problems. Some researchers

(Huang,1987) feel that combinations of more than one type of neural network may

result in a more dynamic and robust system.

Identification and classification of targets from electronic imagery is a difficult

problem due to the vast amounts of data involved. A single image can contain mil-

lions of bits of information, all of which need to be processed. Processing images

for pattern recognition is a threefold problem. First, the targets must be separated

from the background or segmented. Second, the data must be reduced to a man-

ageable size, commonly called vector quantization. This reduction in data can be

accomplished by selecting specific features of a pattern and using only these features

for classification. Good pattern recrgnition requires good & -itures. The final task is

classification of the vectors.

Determining which reatures of an image form the best description of an object

is, in itself, a difflicuit problem. This study will examine several sets of data collected

from a variety of sensors, including laser radar and passive infrared imagery. Baseline

1



cL=.sifiation analysis will be made usinL simple feedforward neural networke then

extended to new forms ot combinations of the feedf-irward networks.

One of the difficulties encountered when testing neural networks is the lack of

good test data. Training a pattern recognition system requires thousands of teach-

ing cycles. Although, one would rtefer very large training sets using real imagery,

in practice "intc.tunately, trairirg sets rarely ex.-eed more than a feu, hundred im-

ages due to the difficulty in segmentation and vector quantization. When exploring

or testing a particular neural net algorithm, the data problem can be avoided by

computer generation oi the input vectors, based on the problem description.

Success of a particular classification problem depends on a number of factors.

First, consider the validity of the segmentation of the data. Has the actual target

been separated from the background data and noise ? Next, is the feature extraction

legitimate. Do the features selected for the input vector represent a good description

of the target ? Once the target has been extracted from the backgroqund, is the vector

quantized description unique enough to allow classification ? Finally, is the neural

network topology sufficient for the size of the decision region and can it accurately

classify input patterns ? Special tools may be needed to answer these questions.

An environment to examine internal operation of the neural networks as they

train could help determine the efficiency, and accuracy of different topologies. Eval-

uation of the internal constants and variables as the network trains may offer insight

into which values may be best suited for a particular set of circumstances. Although
the primary area of investigation considered here is network topologies, the soft-

ware package generated as a result of this effort will be a generalized research tool

to study segmentation or vector quantization algorithms as they apply to neural

network classifi..- ion problems.



. Background

The abifity of machines to interpret visual images remains an unsolved prob-

lem. Military planners have long been interested in developing means to automati-

cally detect and classify military targets using conventional sensors. Although these

sensors, television, infrared scanners or multifunction laser radars, provide enough

information for a human operator to find a target, the exter-ron to automatic detec-

tion and classification is still impractical using current computer architectures. The

computational effort to classify or detect tactical targets from mission sensor data is

too demanding to be performed in real-time.

These problems may be resolved by a computer technology called artificial

neural networks. Artificial neural networks are computer structures or architectures

that attempt to mimic some of the known characteristics of biological brains. Neural

networks may provide relatively fast, approximate solutions to problems, as opposed

to the slow, exhaustive (but exact) solutions provided by conventional computer

archite..tures. Artificial neural networks may be arranged in a variety of intercon-

nections of data input and outputs along with intermediate levels. These different

arrangements characterize the topology of the network. Of the myriad of topologies

of neu--al networks studied, the most directly applicable to the target identification

problem, are the multilayer feedforward networks (MFB) using backward error prop-

agation (sometimes called multilayer perceptrons) and the Kohonen maps. These

two classes of neural networks have an advantage over many other networks, as both

accept continuous data as input (Lippman,1987). Many other network configura-

tions accept only binary data. Although binary data processing is sufficient for some

classes of problems such as text recognition, to pick an object out of an image, the

system must be able to process continuous valued inputs. The analog data pro-

cessed by the network may be in the form of correlation peaks, statistical moments,

or some other vector quantization of distinguishing characteristics calculated from

the original image.

It 3
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While both the multilayer perceptron and the Kohonen maps are suited to

the pattern recognition problem there are drawbacks. The MFB model requires

hundreds of thousands of training cycles. Complete training may require se-0eral

days on a high speed computer. Also, while the number of nodes a. the input and

output is defined by the problem, optimization of the inner node parameters has not

been fully addressed. The number of input nodes is fixed by the size of the input

vector and the number at the output relates to the number of classes. Currently, the
correct number of hidden nodes i.. determined by experimentation. Some feel that

the number of hidden nodes in the first layer should be three times the number in

the input layer. Others feel the configuration of the inner layers should be related
* to the input data (Baum,1986).

Analysis of data using a Kohonen map only partially solves the problem The

output of a Kohonen map is a two dimensional mapping of a multi-dimensional

decision space. By mapping one dass into one area of the map and another class

into another region of the map, the complexity of the decision regions are reduced.

Unfortunately, for a complete solution the map must be interpreted. Currently, that

is done by examination. The output of a Kohonen map is simply another type

of pattern recognition problem. Huang believes that a Kohonen map may be able

to function as a preprocessor for some other class of neural network (Huang,1987).

The combination of the Kohonen map and the multilayer perceptron may offer a

solution to the weaknesses of both. Using a Kohonen map to organize the data

into a two dimensional grid, then feeding the output of the grid nodes to the input

layer of a multilayer perceptron provides a mean of interpreting the Kohonen map.

The Kohonen map may also reduce the complexity of the decision space for the

perceptron. Training time should be reduced since the time to train the weight

values for a perceptron is related to the complexity of the decision regions.

4



1.9 Pr~bkem

The largest part of the effort will be devoted to developing & method to display

the internal values of the network using a graphic representation that allows insight

into it's operation.

By analysis of the dynamic nature of the network, it is hypothesized that

methods for optimizing the topology of the network may be devised, and a bet-

ter understanding of the artificial neural network parsad-gu would be gained. The --

problem of general interest is: can two types of aeural network topologies be com-

bined to get a synergistic effect greater than the sum of the two separately? The

MFB provides a solution to the disjoint decision region problem while the Kohonen

,nap provides a method to organize unclassified data. This thesis effort will examine

several methods of combining networks to get improved performance and reduced

training time.

1.9 Approach

The final product of the study is a graphics intensive environment for dynamic

analysis of artificial neural networks. This software padage will allow thie user to

explore other neural network problems using common problem definition for-.at. By

creating a file listing of a number of exenplars patterns (vector quantizations), along

with a specified classification, any general classification problem can be feed into the

package for analysis.

The package will consist of four types of neural networks accessed from a

common menu. The networks are a Kohonen map, a multilayer perceptron, a counter

propagation net and a hybrid net. In addition, an error surface demonstration will

be included in the menu for tutorial purposes.

Validation and testing of the package is accomplished by using the software to

study four neural net problems. The first problem considered is a decision regiou

5



problem, using both simple and disjoint deciasion regions. The second problem will

consider neural networks as a Fourier filter. The last two problems will use measured

image data from the Ruck (RPck,1987) and Roggemann (Roggemann,1988) data sets.

Using the environment tools, efforts will be made to optimize the number of .

nodes to the type of data being tested. Each network will be tested for the number

of training cycles to convergence, and accuracy. Test sets will be analyzed usin& each

of the conventional nets, as well an classical nearest neighbor c!usifiers.

The development of a hybrid neural network will be the final -tep in a process

to examine several types of neural networks. The process will include finding ways

to display information about the dynamic processes inside the networks.

Chapter II provides background information concerning artificial neural net-

work. Neural networks are discussed in context of the type of problems each topology

is intended to solve.

Chapter III discusses the software engineering aspect of the neural network

environment. The organization of the software is explained in terms of the various

functions and operation of the major modules.

Chapter IV provides the analysis and testing of the software environment.

Several common classification problems are analyzed using the system as well as two

specific data sets. Each problem or data set is analyzed using one of several common

neural network topologies.

Chapter V is an overview of the results of the experiments including general

observations applicable to many tpes of neural network problems.

6



II. Liteuture Review

Real-time target recognition for intelligent we&ans systems is too compu-

tationally intensive to be practical using current computer technology. Picking a

legitimate military target from video sensor information requires sa many calcula-

tions that identification and classification may requires hours while only seconds

are available. The brain, a biological computing engine, can solve these type prob-

lems quickly. A novel computer architecture based on the way the brain is thought

to function, may provide a solution to classification problems. This architecture,

called artificial neural networks, may provide an alternate approach to conventional

computers and artificial intelligence paradigms for target recognition tasks.

This section will discuss the origins of the artificial neural networks, and the re-

lation between the biological aspiration and the computer implementations. Start-

ing with the basic building blocks of neural computers, the node, the difference

between natural and artificial intelligence will be discussed in terms of abstract rea-

soning verses brute force calculations. Several topologies of node interconnections

will be discussed to demonstrate the diversity of programming or training tech-

niques. Finally, this chapter will discuss the characteristic of problems, in terms of

disjoint and ambiguous decision regions, which affect selection of network topology

and training rules. I

2 1 Historical Perspective

Greek philoeophers, including Plato and Aristotle, offered theoretical expla- 4

nations of the brain and thinking process a few thousand years ago. Heron the

Alexandrian built a hydraulic automata around 100 B.C. Abstra~ct, conceptual in-

formation processing operations have been performed by mechanical devices for a

few centuric, for example the slide rule.

7
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The first theorists to conceive of a computer based psychological models and

neurophysiological research were W.S. McCulloch and W.A. Pitts m the early 1940's

(Kohonen,1987). Although early research efforts paralleld the development of the

modem computer (the Von Neumann Machine), the concept of a cybernetic machine

has been popular since ancient times. These types of computers were first called

P connectionist machines and later artificial neural networks.

Artificial neural networks have been studied for -everal decades. At first they

were studied in connection with psychological theories and neurophysiological re-

search. By 1960, many implementations of "neural computers" had been developed.

Today, neural computers may offer a solution to the growing need for a machine

that will perform not only calculations, but actually make judgments. A funda-

mental limitation of conventional computer architectures is the inability for abstract

reasoning. Based on the biological model, neural network computers attempts to

overcome that weakness.

2.2 Naturul vs Artijcial Intelligence

Although it may be impossible to determine exactly how the brain works,

observation of its behavior may be enough to determine why humans are good at

solving types of problems that cause computers great difficulty. Identifying a face in

a crowd, or navigating through a room without bumping into the furniture, requires

an effort beyond the capability of modem computers. Yet, even children learn to

identify their parents after only a few months and the smallest insect is capable of

solving navigation problems beyond the capabilities of advanced robotic systems.

Bruce D. Shriver noted: .3

... digital computers are extremely good at executing sequences of in-
structions that have been precisely formulated for them with stored pro-
grams representing the processing steps that need to be done. The human
brain, on the other hand, performs well at such tasks as vision, speech,
information retrieval, and complex spatial and temporal pattein recog-

8
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nition in the presence of noisy and distorted data-tasks that are very
difficult for sequential digiial computers to do at all (Caudill, 1987:48).

Artificial intelligence is a sequential process which involves collecting all avail-

able data and systematically processing each piece until the solution is established

by completing an algorithm. Natural intelligence differs from artificial intelligence

by using a system to extract relevant information from the available data, then ex-

trapolate an approximate solution. In terms of the target classification problem,

the process would organize the data (self-organization), extract relevant information

(feature extraction), and compute a solution (classificatiou).

The basic building blocks used by the brain to perform these calculations are

called neuronj.

2.3 The Neuron

- Neurons are the brain's electrochemical processing elements which allow indi-

viduals to "store, represent, retrieve, and manipulate data such as images, smells,

sensations and thoughts" (Caudill, 1987:48). Neurons are slow by digital electronic

standards. Response times are measured in hundreds of milliseconds a opposed to

the nanosecond response time of today's integrated circuits. Still, the massive num-

ber of neurons may make up for the lack of speed. The brain is estimated to use

between 1010 and 1011 neurons (Kohonen,1987:227) in an intricate, interconnected -

structure. Many neurons are connected to thousands of other neurons. Each neuron

reaching out to other neurons by means of a single output, the axon, a fiber-like struc-

ture that attaches to other neurons by a synartic terminal (Kohonen,1987,:210-240).

This connection between the neurons performs a small, imprecise multiplication of

the signal transmitted down the axon to the synaptic terminal. These sitnai are

accumulated by the receiving neuron. When the sum of these signals reach a suffi-

cient level, the neuron fires a weak electrical signal down its own axon to the next

neuron in the chain.

9
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Th.. process causing the neuron to fire is the most powerful aspect of neural

computing. Each of the axons provide an adaptable weight which can inhibit/excite

the signal between neurons. The axons are similar to the memory unit in a digital

computer with one exception; they are able to adapt and ch- Ige with time. The

mechanism which modifies these weights enables learning. By duplicating this pro-

cess artificially, we may be able to build computers that learn by example, rather than

loading a itored program. The Japanese, in their announcement of the fifth genera-

tion computers, "coined the term natural vs artificial intelligence" (Caudili,1987:46).

What kind of process or how the process allows people to think, walk, or

recognize objects, is not understood. That this process contains the solution to

the pa..tern recognition problem is demonstrated by our own ability. Whether a

computer can reproduce this ability is the subject of many research efforts. Using

a neural computer architecture, the computer may be able to discover, on its own,

the underlying structures in a given set of input data which makes recogmton of

specific patterns possible (Kohonen, 1981:214-215).

The biological neuron is the basic computation unit of the brain and provides

the inspiration for the neural network node. The node is the basic computational

element of artificial neural networks.

R.4 The Neural Network Node

Advances in many fields have made possible faster and more powerful com-

puters than ever before. Unfortunately, even the most sophisticated computers are

tied to a structure which allows them to perform only a single digital operation at

a time. These register functions, multiplication of two numbers, storing results or

getti i more data, must be performed sequentially, one register at a time. Although

the speed of these simple computations is limited only by the speed of the material

and design technology, there is only a single path for the data flow.

This limitation is known as the 'Von Neumann Bottleneck" (Hanacher,1986).

10
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Input Values
Vector Quantization

Figure 1. A Neural Network Node -

Because each calculation must pass through a single point, the central processor,

data flow is restricted, like a bottleneck. This obstacle may soon be overcome by

an architecture which uses a massively parallel approach to problem solving. These

structures, called Neural Networks or Connectionist Machines, are based at least

partially, on the way the human brain is thought to function. The simplest processing

element of a neural network is the node. Schematically, a node is composed of a

multitude of inputs and one output.

In early neural networks, the output node value was either zero or one, based

on thresholding the dot product of the input vector and the weight vector. A neural

computer is composed of from several to a few thousand nodes.

Dr. Robert Hecht-Nielsen describes the first commercial neurocomputer as

a computing system made up of a number of simple, highly intercon- --

nected processing elmnents, which processes information by its dynamic
state response to external inputs" (Caudill,1987).
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By connecting the output of some nodes to the inputL of other nodes, large

arrays or networks are formed which seem to be capable of computing abstract

decisions. Each processing element computes, in parallel with all other nodes, a

simple true/false decision based on the weighted sum of the inputs. Thebe basic

decisions form a basis for broader abstract reash,-ing.

Analysis of the differing methods to arrange the interconnection between nodes

together with the rules to establish the interconnection weights makeup a large part

of the study of artificial neural networks.

.5 Artificial Neural Networks

Study of neural network model is usually conducted on standard digital com-

puters. Sev 2ral of Kohonen's models were first written in Turbo Pascal for the IBM

personal computer (Koonen, 1987:14). These models take the form of a computer

program. The various parts of the neuron are modeled as da&^ structures in "digital

memory. Although many of the advantages of using neural nets are lost by using a

"Von Neumann" machine, the research process may develop algorithms latc- suitable

for dedicated hardware-

Developing a neural net is a three step process. First, the data structures

are organized in memory, either as arrays or link lists. There are two types of

data structures, the nodes and weights. The nodes are simple accumulators which

occupy the number of memory locations or bytes required for one floating point

number. Ncde can be considered the "neurons" of a neural network. The other

data structure, the weights, are analogous to the axons. They occupy an array of

floating point memory locations, usually a two dimensional matrix of floating point

numbers. The second step is to determine the adaptive weight values using a training

algorithm. These can be either supervised, that is, a priori knowledge of the input

pattern, or unsupervised, using unclassified random inputs. Finally, using a black

box approach, data is presented to the inputs, propagated through the system, then ,L
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read at the outputs (Kononen,1987:13-17).

Like the neuron in biological systems, the node is the principle unit of artificial

systems. A node value is formed by mathematically manipulati the input value and

the connection weights. Exactly how, is dependent on a particular neural network

topology. Every element of the input vector is connected to every nocie. Many

arrangements or taxonomies of nodes and weights have been developed by Hopfield

and others. See Lippman's overview (Lippman, 1987:7-13).

Each type of neural network is applicable to a specific class of recognition prob-

lems. Only two of these networks relate to the problem under investigation, Kohonen

maps and the multilayer feedforward backward error propagation nets (MFB), some-

times called the Multilayer Perceptron net. These two neural network topologies are

suitable to the combination network problem because they allow continuous data

to be used as inputs. Most other types of networks accept only binary data (Lipp-

mann, 1987:7-13). The Kohonen map was selected for its ability to organize data

into rational decision regions, while the MFB was selected for its ability to classify

data contained in complex decision regions. Classification efforts could be reduced

if relevant features which differentiate the exemplars, could be extracted from the

entire data set first.

This is the principle of self-organization. Self-organization is a form of unsu-

pervised learning. In unsupervised learning, the classification of a particular training

exemplar is not used in training process. Comparison of the ctual output with a de-

sired output, essential to backward error propagation, is not made. Self-organization

on compares each exemplar with all the other exemplars. Unsupervised learning pro-

vides an organization of the data which reduces the complexity of the classification

problem.
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2.6 Unsupervised Learning

Kohonen felt that the pattern recognition problem could be simplified if the

algorithm could somehow automatically extract relevant features from the input data

(Kohonen, 1981). Kohonen's work differed from earlier work, because he was looking

for an organization of neuron-like units which could automatically detect common

characteristics of the input data without regard to a specific classification. As he was

trying to do speech recognition, his data set consisted of many unlabeled examples.

Kohonen waw using input vectors made by spectral decomposition of speech to train

his mapping networks. These examples were presented to the recognizer in hopes

that the mapping algorithm could sort out the various vowel and consonant sounds.

The Kohonen map tries to construct a map or "hierarchical clustering" of patterns

with the same characteristics. He called this feature extraction the "first step to all

perception" (Kohonen 1981:2). To do this, he developed an unsupervised learning

scheme which pushes one class of data to one part of the map while another class

would appear on another part of the map. These "feature maps" are a spatial

clustering of input samples with similar characteristics.

2.7 Kohonen Feature Maps

A Kohonen map has a unique structure. A layer of at least two input nodes is

required. Weights connect the inputs to a layer of output nodes. Every input node

is connected to every output node. This output layer is constructed in the form of a

grid. Fifteen by fifteen nodes is a common arrangement (Barmore,1988).

The map is trained by using distance measurements between the input data

and the weights. The difference is fed back to the system to reduce the distance for

inputs with similar chtracteristics. When data is presented to the input nodes, the

Euclidian distance between ar input and a output is calculated. This distance is

calculated by considering each output node in turn. First, calculate the sum of the

square of the differences between each input node and the weight. After considering
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each output node, one distance will be lower than any of the others. This node is

considered the "winner." The weights connected to this node are adjusted slightly

so the distance is a little smaller. Also, each node in a small neighborhood around

the "winner" is adjusted so that any similar data will appear in this region. As the

training continues, the neighborhood around the winner is reduced until only the

s.ngle node is updated. By the end of the training process, under non-pathological

conditions, similar exemplars will cause a node to fire in small reglon of the map.

Classification is a matter of determining which region of the map is activated when

data is presented to the inputs.

Notice that the map is never told what pattern it was training on. Th'- net

simply organized dissimilar data into different regions of the map. Kohonen classifi-

cation is based on visual inspection of the feature map. To automate the classification

process, a new type of learning process is required.

2.8 Supervised Learning

Another class of training algorithms uses a supervised training technique. With

this method, a pattern is presented to the input of a neural net, then the difference

between the actual output and the expected output is calculated. This measure of

error can be used to adjust the weights. This is called "error correction" or "back

propagation". Back propagation is the principle behind the single and multilayer

feedforward (MFB, model neural network.

2.9 The Single Layer Perceptron

While the Kohonen model uses unsupervised learning to organize data, the

specific classification of an exemplar input is important to the training of the MFB

model. The back propagation scheme trains the neural network by example. This

algorthm begins with the connection weights set at small random values. Data are

presented to the input and the error at the output is measured. The gradient of the
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error is calculated, and the weights are adjusted a small amount to reduce the total

error. New data are presented over and over again, correcting the connection weights

a little each time. Eventually the weights, under sufficient conditions, will converge

to a solution. When data are presented to the input, a classification value will appear

at the output. By arranging .ne set of input nodes to feed many output nodes, many

classes of patterns can be identified by detecting either a zero or a one at the output.

Unfortunately, the work of Sun (Sun, 1986) and others (Lippman, 1987) have shown

that the Single Layer Perceptron can only make correct classifications in very simple

decision regions. A number of complications can affect the performance of a single

layer perceptron. Different classes of data being meshed in a small decision region

are one example. The next section discusses a class of problems which cannot be

solved by a single layer perceptron: the disjoint region problem, sometimes called a

disjunctive learning region.

2.10 The Disjunctive Learning Region Problem

A common example of a disjoint region problem is shown in figure 2.10. This

example is sometimes called the exclusive - or problem.

Assume a specific pattern to be in a bounded region in the x-y plane. The

input vector can be generated by selecting one of the regions, and adding random

noise. The output vector, or desired classification of the input vector is determined

by noting the location of the x-y pair in the plane. The example can be extended to

include any number of disjoint regions in either two-space as described above, or up

to n-space with a elements of the input vector.

Additionally the output vector can describe any number of classes. The sim-
plest example could be to relate one region to one class. The disjoint region problem

concerns the case where two regions in the decision space make up a single class.

Large, even infinite data sets can be used when the particular problem being inves-

tigated allows computer generated input vectors such as decision regions in space.

16



Double disjoint decision region
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Exclusive-Or ptublem

Note: No single plane can ,ivide the region by class

Figure 2. The Disjoint Region Problem
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The disjunctive learning region problem stems from a pattern recognition sit-

uation in which the decision space may be split into several regions. Even though

two or more regions in the decision space may be widely separated, the regions may

represent the same class of patterns. When training a net under these conditions,

the convergence time is greatly increased and may not be possible at all. Valiant

notes:

"Simple rules of thumb may be hard to learn. There is evidence that cer-
tain significant ... classes [may be] rendered computationally intractable"
(Vafiant,1983)

He was referring to the fact that generally "rule of thumb" type decisions fall into

this class and contain disjunctive learning regions. Althouga, ia some cases the

network can learn the disjunction in the decision space, the training time may be

unatceptable.

The performance of the perceptron can be improved by adding additional lay-

ers. Single layer perceptrons cannot solve disjunctive learning region problems. By
adding an additional hidden layer the perceptron model can be use to solve disjunc-

tive learning regions. The next section exp!ains the multilayer perceptron.

R.I I Multilayer Perceptron

Adding layers to the perceptron model can allow for an increase in the complex-

ity of the decision regions. The input to a perceptron can be considered as a point

in a decision space with one input node for each dimension of the decision space.

The weight vector defines a plane (or hyper-plane for n-dimensional space) dividing

the decision space into two regions (Lippmann,1987:16). Inputs whose hyperspace

representation appear on one side of the plane are considered to be a member of the

class or in-class and inputs on the other side of the plane are considered out-of-class.

Additional layers in the perceptron model aIlow for more complex decision regions by

partitioning off the space into intersections of several in-class regions. The network
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topology is changed by adding one or two hidden layers of nodes between the input

and output layer. Minsky and Pappert showed that a single layer perceptron could

not be used to solve the exclusive-or problem (Minsky,1961). Huang and Lippmann

showed that two and three layer nets can form arbitrary decision regions as well as

solve disjoint decision region problems (Hanng,1987:1-2).

A problem may arise when the input data is not sufficiently separable. Rosen-

blatt demonstrated (Lippmann, 1987:14) that if the data was separable, and a bound-
ary could be placed between the two decision regions, the training algorithm would

converge to the correct solution. However, if the data is not sufficiently separable,

then the convergence procedure might oscillate, moving the decision boundary be-

tween overlaying data points. A modification to the training algorithm, using a least-

means squares solution was suggested by Widrow and Hoff (Lippmann, 1987:14).

Unfortunately, the algorithm is not as efficient for distinctly separable data. This

type of problem is caused by ambiguous decision regions. When two classes of data

are very close to each other in decision space, perceptron models do not converge

well as will be shown in Chapter four.

Another solution, recommended by Huang, suggests using a hybrid combina-

tion of a Kohonen layer on the input whose output nodes would feed the inputs of

a MFB network (Haung, 1987:1-10). In his approach, the Kohonen map could be
used to organize data which would feed a MFB model input layer. This approach

could prevent having to train the MFB to classify data in complex decision spaces

and significantly reduce training convergence time.

To explore the possibility of combining different types of neural networks, the
I sonar classification work of Sejnowski should be considered (Sejnowski,1987:75-89).

His work is importait because it is one of the first efforts, along with Huang, to un-

derstand exactly what is happening in the hidden weights and nodes of the multilayer

MFB. In his experiment, Sejnowski trained a neural network to differentiate between

the sonar return of an underwater metal cylinder and a rock with a similar shape.
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The network uses two layers. The classification was based on the low order Fourier

components of the return signal. His goal was to determine the internal strategy

used by the network to make a classification. A complete description of the result is

beyond the scope of this discussion, refer to the Sejnowski paper (Sejnowski,1987)

for a complete analysis. He did note that the overall stra'egy of the net was to

default to a cylinder response and to detect the presence of rock characteristics. The

scheme caused deactivation of all nodes, while the activation of only a single node

caused the firing of the rock node. His work is significant, not only for the results of

the experiment, but the tools and procedures he developed to characterize the inner

workings of the hidden layers.

Huang, with a simple constructive proof, showed for several cases that disjoint

decision regicns could be formed, not only with a two hidden layer arrangement, but

also with a single hidden layer. He went on to show that although these types of

complex decision regions could be constructed on paper, in practice back propagation

training would not converge in any reasonable amount of time without the second

hidden layer.

With this analysis, Huang proposed three alternate classifiers, a fixed weight

classifier, a hypercube classifier and a feature map classifier. Fixed weight classifiers

attempt to reduce training time by only adapting weights between the upper layers of

the network. By fixing the weights at some arbitrary values, hyperplanes formed at

the input may be sufficient for the upper layer to classify without additional training

of the lower levels. The weights were fixed and tested in two manners, first randomly

set weights between negative 0.5 and positive 0.5, and second, using statistics of the

input data to form grid lines. This solution proved inadequate, as the possibility of

convergence depended on the starting values for the randomly selected weights.

The second proposed solution was to fix both of the lower level weights at

specific hypercubes calculated from the statistics of the input data set. The upper

layer of weights are trained using back propagation or some similar degeneration of
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back propagation base' -in the relaxed requirements. The results were good, but

the computational effor. of estimating the initial hypercubes was significant. Better

results were achieved using the feature map approach.

The feature map ciassifier is a simplification of the combination neural network.

The first layer of the network forms a feature map using a self-organizing clustering

algorithm as described by Kohonen (Kohonen,1987). Weights to the Kohonen map

are trained unsupervised allowing first layer feature nodes to sample the input space

with a node density proportional to the combined probability density of all classes.

The first layer feature map nodes perform a function similar to that of second layer

hypercube nodes from the previous example, except the results are more general.

Each node will go high for a general region of the feature map. The upper layer will

do the necessary "and-ing" and "or-ing" of the decision space for proper classification.

Huang used quantized speech vectors for his data set. For image target classi-

fication, the decision regions may be complex enough to require the additional layers

of a MFB. Huang uses only a single layer above the feature map.

The next section discusses an alternate approach to classification called the

counterpropagation network. Counterpropagation is used as the starting point and

benchmark for development of the hybrid network.

R.1. Counterpropegation

The counterpropagaLin network is an architecture which combines the self-

organization feature of Kohonen with the outstar structure suggested by Grossberg.

The combination network is a multilayer feedforward network with a Kohonen J

organizer on the first layer and a Grousberg outstar on the second. It has two

additional layers used to train the network which will not be 'discussed, except to

note that a counterpropagation net will allow regeneration of a input vector by

specifying an output, henco the name counterpropagation.
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Donald Woods (Woods,1987:473), noting two aberrations to the learning, sug-

gested that a conscience be to added to counterpropagation. The first problem with

the Hecht-Nielsen algorithm is that the input vector must be nonnalized. limiting

all exemplars to the unit hypersphere. Consequently, no differentiation can be made

between vectors which are related by a sealing factor. The problem can be overcome

somewhat by a training rule which tries to minimize the distance measurement in-

stead of maximizing correlations. In this way both (1,1), and (2,2) will be mapped

uniquely in the decision space.

The result obtaned by using Kohonen type mapping as an input another type

of network is the generation of an intermediate, unclassified representation of the

input. The complexity of the data to the output layer is greatly reduced and the

construction of the output net is better understood. For backpropagation using the

three to one first hidden layer nodes to input nodes, will probably converge, and

network pruning can reduce complexity even more.

The difficulty of this approach is that the intermediate representation of the

data may not be a good vector quantization of the input. Convergence is guaranteed

under the simple criterion that the number of elements in the Kohonen layer is greater

than the number of distinct decision regions in the input data, again something

unknown a priori. The number is bounded by the number of exemplar vectors used

for training. As the number of Kohonen units approaches that number, the solution

will degenerate to a simple table look-up without generalization.

On the other hand, as the number of nodes is reduced, each node represents the

average of a number of exemplars. Classification is simply a matter of mapping the

Kohonen map to an output map. For something as simple as the counterpropagation

rule, the Groesberg outstar format is sufficient. The output is 'simply a binary word

one bit per class.
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2.13 Summary

Computation based on neurophysiological models has been considered for a

few thousand years, though actual neural computers have only existed for only a few

4ecades. While the von Neumann computer remains the most widely used computer

architecture today, neural computers may someday perform tasks which today's

computer cannot.

Neural computers do not find solutions to problems based on systematic, exact

calculations, but make judgments or estimates using a massively parallel approach.

The approach uses from several to thousands of individual processing elements.

The processing elements, or nodes, are based partially on how the brain is

thought to function. While the nodes may in some ways resemble the architecture

of a neuron, how this architecture with interconnections between hundreds of nodes

is able to solve real problems, remains a mystery.

Many different interconnection schemes have been suggested to transform a

number of nodes into a computing machiue capable of making judgments. Each of

these schemes or topologies reveal their own strengths or weaknesses depending on

the type of problem being considered.

The statistical makeup of input data seems to determines which type of neural

network is best suited to solve a particular problem. For simple decision region

problems with no disconnected or disjoint learning regions, neural network training

is easy and only a few nodes are required. As the number of disjoint or ambiguous

regions increase, the size of the network required for convergence seems to increase

dramatically.

Classification problems would be simpler if the input data could be mapped

into a decision space which lacks these disjoint regions. Data self-organization as

suggested by Kohonen, may provide such a mapping. Combining Kohonen self-
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organization with back propagation of error may reduce the complexity of the deci-

sion regions and consequently reduce training times.

In order to construct a combination MFB and self-organizing neural net, an

environment to analyze the dynamic nature of neural nets is developed for use on a

color graphics workstation. The environment wil allow the study of several types of

neural nets with application to both measured data (the Ruck and Roggerman sets)

and calculated data. The next section will discuss the organization of the software

environment use to develop the Hybrid network.
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III. The Neural Network Analysia Environment

In order to study the dynamic nature oi neural networks, an environment was

devised to present the vast amount of data in such a way that would allow insight into

the internal workings of the net. A system was designed for the Silicon Graphics

IRIS workstation and written in the "C" programming language. The IRIS was

selected over similar work stations because of the larger color table available than

on the Sun or GPX workstations.

The design method was iterative. A number of working prototypes were de-

veloped, adjusting displays and menus as needed. As more was learned about each

topology and algorithm, new reruirements were added. Consequently, the require-

ments analysis phase lasted through most of the project. One of the goal of the

project was to study different network topologies. Only as the models were imple-

meatid and tested did it become apparent what type of information needed to be

displayed. After a number of prototypes were developed, patterns began to emerge

as to which software modules were problem specific and which could be reused to

create more varied and powerful modules.

Special features and displays were added to the environment as research into

the problems continued. The simple models showed what might be useful. The

final product took the basic designs and fit the pieces into general purpose reusable

components for construction of new topologies.

The Neu,lGmphics software package developed as part of the research, con-

sists of independent programs run from a common menu. The programs are selected

from a shell or script program which calls the individual programs. Each program

is independent and is run as an execution file from the script program.
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Although each program is independent, they all share a common software de-

sign. This section will discuss the modules which make up each of the four types of

neural networks which make up the NeuralGraphics package.

9.1 Sofware Design

Each of the neural networks is composed of a number of independent software

modules. Changing the topology required only small local changes within a particular

module to change the old network to include new training rules or display features. --

In addition to the basic modules, a graphics tool box is provided, which is specific

to the Silicon Graphics IRIS video display.

At the highest level of abstraction, a neural network will consist of: a routine

to compose input vectors, a propagation algorithm to feed the vector through the

network, a training routine for modification of weights, a graphic display package

and an analysis routine for periodic testing. Important lower level modules include

the initialization procedure and an event driven menu to control the training and

operation of the network.

3.2 Initialization Module

The initialization routine has three functions. The most important is the es-

tablishment of the network in memory. In addition, the weights and thresholds must

be filled either by a random number generator, or a stored file from a previously

trained net. The second feature is to check which software switches are being in-

voked. These include display options, and training parameters. The third function is

the equipment check to determine the nature of the graphic displays and to initialize

the video drivers as necessary. The size of the screen will determine exactly how

much data can actually be displayed.
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3.2.1 Initialization and Declaration of the Net A "C" data structure is used

to define the network. Each type of net uses a similar structure. An array of numbers

for the output and input form the basic net. Between layers lie similar arrays for

the various hidden nodes, if any. In addition to the nodes, there are the weights

connecting the nodes. These are represented as two dimensional matrices. Another

element that makes up a neural net is called a threshold value. Although similar

to a weight, these values are stored as a single dimension array associated with a

particular node array.

These data structures, along with a definition for input, output and hidden

layer array lengths are stored in a single program module (a header file for C pro-

grammers). The data structure is declared and is one of the few global variables for

the whole program. The net weights are initialized in one of two manners: either

by randomly selected weights, or retrieved from a file. After the data structures are

initialize the video hardware must be initialized.

3..2. Initialization of the Video Display The current version of the package

initializes the hardware for a Silicon Graphic IRIS workstation. This is a Motorola

68020 based computer with an extended graphics capability. Wherever possible,

hardware specific commands are isolated to the graphics module. Porting the code

to other types of hardware requires only a substitution of the gl.h and device.h

header files. These device specific files are provided by the IRIS compiler pa-kage. A

substitute file would include macro redefinitions for the hardware specific commands.

Once initialized, a framework is established for solving a classification problem. The

main program loop continues the process by propagating the input to the output,

adjusting the weights, and checking the progress. The next section discusses the

structure of that process.
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3.3 The Main Progrm Loop

The main program loop consists of the MAKEINPUT module, the PROPA-

GATE module, the TRAINNET module, the TESTNET and the DISPLAY anta

SHOW modules. A counter is used to inhibit the calling of some modules through

the loop to reduce computations effort. For example the screen may be updated only

on every tenth cycle. However, each pass through the loop represents one training

cycle, so MAKEINPUT, PROPAGATE, and TRAINNET will always be called.

9.3.1 Makeinput Essential to the training of a neural net is a set of input

patterns and a defined classification, in other words, an input vector and a desired

output (doft). The function will fill the net data structure with a randomly selected

exemplar from the exemplar or test set. The module allows for calculating the

vectors or taking them from a stored date set read in during initialization. Also,

the initialization data preprocessor may add gaussian noise to vectors. The work of

Sietsma and Dow indicates that adding noise distributed across the actual statistics

of the data seems to improve the performance of the netw ,rk.(Sietsma,1988:325).

3.3.2 File Input of Exemplar Sets Most problems can be described in terms of

a set of input vectors and a prescribed classification. The NeuralGraphics software

requests a file name on initialization which is used to fill a pool of exemplars. An

exemplar is selected randomly from the pool whenever the makeinput routine is

called. Also, the routine ensures that in addition to random selection on exemplar

number, there is also random selection based on class type. This prevents excessive

training on a single class, when the classes are not evenly distributed in the input

file.

3.3.3 Measured Data With measured data, the data is contained in a data

file. These files can contain any type of information. In general these input files

contain a data set which exercise a particular area of investigation or data that has
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been measured by a real system. The Ruck data is a collection of Zernike moments

(Born and Wolf,1964) calculated from laser radar images of tanks and trucks. The

file could just as easily have contained data from frequency analysis of speech or

spatial frequencies of character data. A neural net should treat any type data in a

similar manner. The file also must contain header information relating to the length

of the input and output vectors and number of exemplars and classes. The data

is composed of an exemplar number, the vector quantizations and finally the class

identification.

3.3.4 General Purpase Function. The MAKEINPUT package contains other

modules necessary for handling the data files. The three principle functions contained

in the package allow for initializing the data storage, returning a random exemplar

to the main routine, and statistical processing of the data. The statistical function

is a stand alone program. By calling this program from the menu, the anadysis is

completed and the program terminates. The statistical package performs a K nearest

neighbor analysis of the data and displays the result.

3.3.5 The Fourier filter problem A special subroutine for the backpropag-

tion network demonstrates mathematically calculated input vectors. This routine is

contained in the Makeinput package. It is not intended to be part of the software

package, but serves as a template for problems that require calculated exemplars

rather than those taken from a file.

The MAKEINPUT routine for this problem computes an input vector based

on the sum of three sampled sine waves with an amplitude of one. The length of the

input vector is arbitrary, but once defined in the header information, represents the

Nyquist sampling lmit. The output vector has the same length as the input vector.

The output vector representr the desired output in terms o. harmonic components.

For example: if the length of the two vectors is chosen to be eight, the input vector

is formed by taking eight equally spaced samples of any of three possible sine waves,
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sin(O), in(t), sin(2t) ... sin(nt). See figure 3.

There are n outputs, one for each possible frequency component. The output

vector represents the presences or absence of a specific fourier component.

In addition, a random phase is added to each of the three components. The

output is specified by the three selected sine waves. If a particular sine wave is

selected, that output value is one, if not selected as one of the three, its output

node value is zero. The hypothesis that a mapping from the input vector to a

Fourier analysis at the output seems reasonable considering that the sine and cosine

functions, together form a basis set of orthogonal vectors.

These types of problems can be used to test neural networks. One &dvantage of

neural networks is an amazing fault tolerance. Experience has shown that this fault

tolerance extends to the software as well. Consequently, many software errors only

show up as a degradation in training efficiency. Before a new neural network can be

used for measurements, it should be tested against one of these types of standard

problems. After validation of the net against a standard problem, the net could be

used to analyze measured data.

3.9.6 PROPAGATE - Using the net With the organization of the net in

memory, the net can begin to learn and classify targets. To use the net, the rules

for propagating the data from the input to the output must be specified. This is the

purpose of the Propagate package.

Due to the experimental nature of the presentation environment, a design goal

was to reduce the amount of software an experimentor would have to understand in

order to alter the code to suit a new experiment. Both PROPAGATE and TRAIN-

NET are the two modules which must be the shortest, cleanest and most precise

from a software engineering point of view. Altering the screen displays could require

a fair amount of expertise in graphics and program interfacing, but one would not

expect to have to change them very often. The PROPAGATE and TRAINNET
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packages would be expected to change with each new experiment, so a reasonable

effort is made to enhance the simplicity and documentation of the code.

3.3.7 TRAINNET- Teaching the net. The TRAINNET module specifies the

training algorithm for the network. Four versions of the trainnet were written, one for

each type of training rule. The package includes the b&ckpropagation rule developed

by Paul Werbos (Werbos, 1974), as well as Kohonen type rules for unsupervised

training, counterpropagation by Hecht-Neilsen and hybrid Propagation developed as

a result of this thesis effort.

3.3.8 CHECKERRORS - Checking performance of the net. Network perfor-

mance is evaluated in two ways. First, training is periodically stopped and a test

set is evaluated. The second method checks the performance after every training

cycle against the current training vector. For a general evaluation of the neural net

performance, a set of training data is run through the net without training cycles

between tests. For a more specific analysis, using a data set different than the one

used for training, can show the validity of the feature set used to classify the targets.

The CHECKERRORS routine allows this type of checking mid-process by running

a quick test set through the net, then measuring the performance. The actual test

set fs specified in the initialization routine. When the data is read into memory dur-

ing initialization, the first line of the file specifies the number of training exemplars

followed by the number of test exemplars. This partitioning of the data allows the

CHECKERRORS routine to test the net with a set of vectors the net hasn't seen

before.

3.4 Program control

The program uses two devices for program control: the mouse and the key-

board. The mouse is used where specification of a particular node iN required and the

keyboard is used for larger program control functions like reading or writing weights.
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3.4 .1 Event Driven Menu An event driven menuis provided to control house-

keeping functions of the network. Event driven routines are more efficient than using

a keyboard poll. Event driven menus require a hardware event to call the menu

subroutine. No device polling is necessary. The event, in this case, is typing a

control C on the keyboard. A control C activates a hardware interrupt to the kill

address vector. The program has substituted the normal kill address vector with the

menu address vector.

While the main purpose of the meu is to allow the user to save and restore -

weights, the menu also allows control parameters to be changed while training is in

progress. The menu display in the textport offers a series of selections. Selection of

a particular item will then prompt the user of the parameters associated with the

particular call.

3.4.f DISPLA YNET The display routines refer only to the graphics portions

of the display. These include such functions as drawing the network weights, drawing -

the nodes, setting the colors, finding data ranges, and drawing color bars. The pack-

age is split int( .wo types of graphic routines. The basic set contains those functions

which are machine dependent. In general, a macro is used when possible to allow for

redefinition to other machines. Those which are not machine dependent are combi-

nations of the basic routines that are machine dependent. An example would be the

color bar routine. These two types of routines are included in the graphics package.

The group of routines which are specific to a particular topology are contained in

the display package. In general, when the problem under consideration changes from

something like a Kohonen map to a counterpropagation model. The entire display

package is replaced. The graphics package is used as an include file so the process

of building a new display is somewhat reduced.

3.4.3 SHOWNET The SHCWNET package indludes all the textport printing

and display routines. This package includes routines for display of a set of weights,
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output and input values printed in ascii format in the text port. Except for test -

results, the subroutines are not intended for use in general operation of the network.

These routines are intended for use in trouble shooting when the program has been

altered. The exception is the showoutput function. Periodic presentation of both the

desired and actual output is useful in tracking the progress of the net. In addition, 14

the error information is displayed in the same module. Adding more information

during the SHOW subroutine is a matter of changing the "I"codes in line 10 of the

SHOW subroutine.

3.5 Summary

The material in this chapter outlined the major software modules which make

up the NeuralGraphia environment. Although the package is self sufficient and

can be applied to almost any segmentation or vector quantization problem without

code modifications, the nature of software dictates that sometime changes will be

required. The information presented, together with the code and comments, should

be sufficient for making changes to suit a particular problem.

The next section chapter two purposes: to document validations and testing

the system and more important, is to answer the types of questions the system was

developed to investigate.

The NeuralGraphics study environment is designed to function as a window

into the internal structures of neural networks. The following chapter will describe

the obsenations which led to the development of a new type of neural network, the

hybrid net.
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IV. Data Analysis

4.1 Introduction i
This chapter has two purposes: first, to document the validation of the software

and second, to show how the graphics environment was used to construct a new

paradigm for training artificial neural networks. The hybrid network is the result of

examining learning characteristic for several types of neural networks, then amending -

the learning rules to correct several weakness discovered. The hybrid network is

shown to be more efficient than MFB for ambiguous decision regions.

Several types of data are analyzed to validate the study environment. To

investigate the learning characteristic of MFB, error surface analysis software was

developed. Using a threedimensional display, patterns of neuron weight adaptations

are presented for simple neural network problems. A Fourier filter problem demon-

strmted the use of the environment with calculated exemplar sets. The last two

problems, consider two sets of data extracted from digital imagery. The Ruck and

Roggemann data sets are used to evaluate the features selected for neural network

analysis. The analysis of these data sets is used to contrast numbers of training cy-

cles and accuracy for Kohonen maps, the multilayer perceptron, counterpropagation,

and hybrid propagation.

4.2 Error Surface Analysis

This section will discuss an experiment in error surface analysis used to examine

the adaptation of neural network weights while training. Two methods of adapting

weights are examined and compared.

A neural network node is the fundamental unit of an artificial neural network.

It is composed of an input vector, a single output, and a set of interconnecting

weights. A node also includes a rule for propagating the input to the output, and a
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rule for training the weights. Three types of nodes can process analog input data.

These three types of nodes are the back propagation nodes, the Kohonen nodes, and

similar to the Kohonen nodes are the counterpropagation nodes.

To investigate the process of error reduction by adjusting the weight vector,

each type of node will be considered in turn.

4.2.1 Error Reduction by Back Propagation of Errors Back propagation of

* - errors was developed by Paul Werbos (Werbos,1974). In recent work, a modification

to back propagation has been suggested by David Parker (Parker,1986) called second

order learning. To understand how these algorithms reduce error, a visualization tool

* is included with the package to track the error as the weights adapt toward a solution.

4.2.2 A Simple Classification Problem The first artificial neural network sys-

tern considered is the simplest system possible. The simplest problem associated with

a neural network would be that of a single neuron with two weights attached. The

classification problem is to differentiate between two points in the decision spac..

Use of only two weights will allow plotting of the system error as a function of two

values, W, and W2 . A value of one is used for 0, the threshold.

Two points are arbitrarily selected: (2,1) for class one and (1,1) for class zero.

Now, the amount of error for any two arbitrary points can be determined by the

relation:

error2 = (-f(I + y * W))2 + (o - f(X2 * W, + y2 * ))2 (I )

The function f(w, w2 ) is a limiting function as described by Lippmann (Lipp-

mann,1987). This demonstration uses a sigmoid function to ensure differentiability

as required for the back propagation rule. This function is sometime called a squash-

ing function, because the output is squashed between zero and one. The program is

run a number of times with the results shown in figure 5.
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Figure 4. Simple Neuron Problem

In Figure 5 the red and yellow tracks show the change in weights fron. the

random starting point to the final convergence point. Red areas on the plot indicates

those areas with the greatest amount of error and blue represents the lowest amount

of error. Weights are plotted with w, on the x-axis and w2 and the y-axis. The three

dimensional plot shows height of the error surface on the z-axis. The graph in the

upper right hand corner exhibits the line found by the neural network which divides

the two decision regions.

Two point problems are of little interest because of the simplicity of the error

surface. The problem is made arbitrarily complex by adding additional points. The

example in Figure 8 considers six points for classification. The equation of the error

surface can be generalized to include an arbitrary number of points.

error(wi, E(doftj - f(x* w, + y, * o)) 2  (2)
iml

Considering weight values between positive and negative two, an error surface

is constructed to show the relative error for different values of ot and w2. The results

are shown in Figure 8.
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Figure 5. Six Point Error Surface: Low Eta
Note: No matter where the weighs start, they mve toward the lowest point on the
error surface. Note the saul step size in arem of low error.
Eta -0.3 Momntum =0.0
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Figure 6. Six Point Error Surfwc Larg Eta
Note- For larger eta the step ize seem larger.
Eta -0.8 Momentum 0.0
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Figure 7. Six Point Error Surface: Low Momentum

Note: Momtum seems to round the edges of the path.
Eta =0.3 Momentum =0.2
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Figure Six Point Error Surfaa Large Momentum

Note The values dered the best compromise between good movemen in the low
error slope regions and yet lack the wild swings of the high dolpe regions.
Eta = 0.3 Momentum = 0.8

The experiment was repeated several times using different dusters of the exem-

plat points and randomly selected initial weight setting. Each initial weight setting

relates to a new starting point on the error surface. The yellow tracks in Figures 8

and 9 show the weight values adjusting from higher values (red and green) into the

blue regions that indicate a the lower error. Figure 8 shows the reduction of error

for a Werbo back propagation rule, while Figure 9 shows the decent down the error

surface of a second order algorithm.

The error surface routine demonstrates how the weights adapt from the random

starting point, to the region with the lowest error. While the second order algorithm

41
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Figure 9. Second Order Algorithm
Not,. The error reduction is smoother, but sometime misses altogether as noted
where the fine goes off the screes.

Al - 0.2 A2 = 0.0 A3 = 0.0 A4 = 0.1 A5 = 0.05

showed a smoother flow acos the error suface, the first order seems to f nd the error

minima with fewer training algorithms. Second order adaptation requires adjustment

for four coeffidents. (Piauza, 1988). Examination of the error surface ensures that

use of first order algorithm is sufiicimt for the following problems. Of the five

coefficients necessary for second order back propagation, two are also required for _

the first order algorithm. One is the standard 9, or training rate, and another is a

term which Lippman calls momentum (Lippman,1987).

Momentum sometimes has the effect of decreasing training iterations, while at

the same time may avoid local minima.
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Figure 10. Second Order Algurithm

Note. Reducing the value of Al to 0.1 improved the Performmnce-
Al = 0.1 A2 = 0.0 A3 = 0.0 A4 = 0.1 A5 xx 0.05

4.2.3 Se#f-Oryouizing Nodes No graphic tools Were developd to analyze the

Kohonen and counterpropagation node. Their learning paradigm Is fairly straight

forward, with the weight vectors moving toward tt~e input vectos. Neither ofthes

typo of nodes is capable of classification on its own, each of these nodes performs a

simple correlation with the input vector.

In the came of the Kohonen node, the correlation is a measure of the Euclidiu

distance between the weight vector and input vector. The counterpropagation node

uses a dot product multiplication to correlate between the two. In either case, the

weight update rules cause the weight vector to move toward the input vector.

The output of a Kohonen node is usually based on the values of adjacent
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nodes. For example, only the node with the lowest distance or higL-st correlation of

a layer of nodes is passed to the output or next layer. The rest are sometimes set to

zero. The learning process in self-organizing nodes specifies that only one or several

adjacent nodes are adjusted with each training iteration. The effect is to allow one

node to capture a particular region in the decision space. The weight vector for a

particular node will be equal to the average of all the input patterns for which it has

been updated.

The counterpropagation node is in most ways equivalent to the Kohonen node.

The difference is related to the type of data which is being c!assified. The courter-

propagation node expects normalized data, otherwise the dot product will be scaled

and the correlation of the weight vector with the input vector would not be valid.

All input vectors must lie on the unit hypersphere. When the data is derived from

transducers or instruments, the measurements for similar patterns my bd uniformly

scaled. Normalization removes the effects of this scaling.

4.2.4 Resuits First order back propagation of errors seems sufficient for any

simple classification problem. Using a value of 0.3 for v and a value of 0.8 for

momentum seem sufficient for training. Higher values didn't seem to make any

difference in training times.

The smooth rounded tracks of the second order al&arithm indicate excellent

error correction. However, due to the computational complexity ef computing each

correction, the first order algorithm was selected over the second order algorithm.

Pi.zza's work with larger network showed that although the second order network

does out perform first order networks, the improvement is small and may not justify

the additional computations (Piazza,1988).

With selection of a training algorithm, the next section discusses an applica-

tion of the training routine to ancther simple problem, identification of cosines in a

random signal.
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4.3 Feedforward Networks as Fourier Filters

This section will describe an experiment in which a back propagation network

is used to identify the presence of specific components in a harmonic signal. The

experiment was devised as a simple prototype on which to build the rraphic displays.

Although the experiment was successfu, the purpose of the program was to identify

which elements of the network should be displayed in graphics format.

The equation describing the calculation of the digital Fourier transform looks

like it could be represented as a description of weights in a neural network.

N-I

Xd(k) = I/N z , * cos2kn/N - j.jin2kn/N (3)
fmG

The output of a specific node is given by Xd(k) the inputs are the z. values. With k

output nodes and n input nodes a system could be implemented to generate Fourier

trarsforms by setting the weights using the equation:

Weight#. = cos2rkn/N + jsin2rkn/N (4)

To adapt Fourier analysis to a neural network, the problem is modified to take

advantage of the strengths of neural networks.

To reduce the problem to a manageable size, only the in-phase (cosine) com-

ponents will be considered, and not the quadrature components(sine). Further, only

the actual presence of a component will be detected and not the magnitude related to

that component. Although it appears conceivable to calculate coefficients, it would

not be a good pattern recognition problem. A problem consistent with the intent

of pattern recognition would simply indicate the presence of a Fourier component in

sufficient strength to fire an output node.

A similar problem, calculating quick approximations of periodic data is dis-

cussed in detail in the thesis work of James Straight. His work pays particular atten-

tion to time projections based on the past history of the input data. (Straight,1988)
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Figur 11. Fourier Filter Neural Network
Note: The position of the three red output nods indicate the input pattern contained
the sum of sin2t, inU, wdiiit with t betwem weo and 2r.

The back propagation algorithm requires the output to be in the form of a

difieraitiable squashing function. The most commonly used is the uigmoid (Lipp-

mann,1987). To generate magnitude@ at the output would require using a mapping

function to recover the desired output from a sigmoid function. This complication

will be avoided by using only unit valued Fondae component. in the input, and train-

ing to only desired outputs of one or zero. To train the network to generate actual

component. of the Fourier transform is beyond the scop of this exercise.

4.S.1 Making the Inapnd Oa~pu Vectors The network consists of an ar-

bitrary number of input nodes with an equal number of output nodes. Seveal

variations in the size of two hidden layers were tried. The emnta of the inpu~t vec-
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tor are formed by taking time samples of the sum of three sine wave. For example: if

the network topology consisted of n nodes, three values of n were selected rawilomly.

The three sine wave are added together. The sine wave were selected from: sin t,

sin 2t, sin 3t ... sin nt. Time sampies of the composite waves are used as the input

vectors.

Before time sampling an arbitrary phase is added to each of the samples.

Arbitrary phase is added to each signal to ensure the internal representation of the

input vector is related to the Fourier decomposition. An early experiment neglected

adding a phase component. Consequently, the training effort was greatly reduced,

which indicates that a simpler internal representation was detected by the network.

The resulting signal (input vector) is fed as input into the neural network. The

output is calculated and compared to the desired output. In this limited problem

three of the output nodes should contain one, and N-3 will contain zero. Evaluation

of the system consisted of considering one of the fundamental problems of neural

networks, finding the optimum number of nodes.

It was noted during analysis that the greater the number of connections, the

more complex of a problem it could solve. For example, with no hidden layers, the

neural network would converge as long as the phase component remained zero for

all components. By adding two hidden layers, random phase could be added to the

signals.

4.3.5 Rersft A number of measurements were made with the results shown

in Table 1.

The experiment demonstrated that neural networks can learn Fourier analysis,

although no evidence exists to show that the internal representation discovered by

the network, has anything to do with Fourier analysis. The data set for these initial

classification experiments, was statistically homogenous because each of the n pos-

sible Fourier components was selected with equal probability. Also, the amount of
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Figure 12. Neural Network Fourier Filter

Note. This topology was used to represent a six input Fourier filter. The input is
the time sample sum of thuee sim waves with random phase The three red dots at
the output show which components awe being detected.

phase added to each sine wave component was selected randomly using a constant

probability. Consequently, an infinite number of possible combinations of random

phase and components was possible forming an infinite training set.

AW problems usually lack this advantage. Measured data tend to have data

point clusterd togethw., with indistinct class separation boundaries. The next sec-

tion introdutes some of the problemis inherent to measured data, and an approach

to solving thee type of problem.. This approach, called seff-organisation, attempts

to map the input Oat& into a more logical decision space reducing the complexity of

the dlassification problem.
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Input First Second Outputs Training Cycles Correct
4 4 4 4 20,000 .22
4 8 8 4 20,000 .82
4 16 16 4 20,000 .95
8 16 16 8 20,000 .9T 

10 20 20 10 10,000 .95
16 32 32 161 10,000 .95

Table 1. Fourier Filter Nodes vs Training Time j

4.4 Self-Oryanization of Data

Lippmann and others have shown that the multilayer perceptron approach to

problem solving is to the divide the decision region with hyperplanes in the first

layer then appropriately combune these regions with and-sg and o,,-ing functions

to generate clas distinctions in the upper layers. Self-organbation has been wed

for some time in image processing data reduction (Kucxdwski, 1987). Kucadwski

suggests using MFB as a self-organization structure. His algorithm uses a five layer

feedforward network which attempts to find a smaller internal representation of the

input by using the input vector as the desired ontput then trains on itself.

If there are fewer nodes in the hidden layers than at the output, the internal

nodes are forced to learn a set of lower dimensional features than were given at

the input. The reduction should be a more efficient pattern classification where

the reduced features can be considered as some scrt of basis function set. If the net

converges, these features preserve the distance metrics and can be used to reconstruct

the original pattern.

When the network is presented a pattern which contains more information

than the storage capability of the net, the best average match is selected internally

and used to generate the output. Kuczewski reports that the reduction in dirmen-

sionality has no consequences until noise is added to the input vectors in which cae

misclassifications go up significantly.
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For application to the classification problem, the bottom two layers may be
extracted as self-organizing input layers, then used as an input to another network.

To test this means of self-organization, a five-layer network was constructed
and tested using a double disjoint region test set. After several hundred thousand
training iterations, the network had still not converged to a solution. The network
had difficulty finding a solution because of the weight update algorithm used for
lower levels. As more layers are added the backward error propa.ation becomes more
diluted with each level removed from the true error measured at the output. Ar more
and more hidden layers are added, training time increases significantly. When the
reason for the failure was understood, this line of investigation was dropped.

Perhaps a network which trained from both ends toward the center could over-
come the dilution of the error. Such a network could use self-organizing based
training at the input and backward error propagation at the output.

Although the application of MFB as a self-organization tool has been demon-
strated by Kuczdwski, application implies greatly increased training times which
is an unacceptable liability. Use of Kohonen maps to set the weights for an MFB
network may offer a better solution.

4-4.1 Kohonen Self-organization Lippmann suggested that back propagation
of errors works by using the input layer to construct hyperplanes to separate classes.
The upper levels appropriately combine regions formed by the hyperplanes to allow
classification. To increase the efficiency of each input node, it may be possible to
construct these hyperplanes based on the statistics of the data. To explore this
hypothesis, this section examines Kohonen self-organization.

4.4.2 Kohonen Self-Organization and Simulated Data Using an early outline
of Kohonen's self-organizing algorithm (Kohonen, 1987), a display was designed
to evaluate different distributions of iuput data. First a two dimensional input

so -
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is constructed, then a three dimensional, then finally an n-dimensional input. To

investigate this self organization of data with respect to the Ruck and Roggermanp

data sets, a Kohonen map is constructed which accepts file data as inputs.

An important aspect of biological neural function is the ability to organize

neurons in response to stimulus. Kandel and Schwartz believe that the placement of

neurons is orderly and reflects characteristics of the data being sensed (Kandel,1983).

Kohonen maps attempt to duplicate this ordering of data without respect to any

particular classification of data with the self-organizing feature map.

The environment includes a Kohonen map demonstration designed for a hig'

resolution graphic display. The first display demonstrates self organization of ran-

domly selected two dimensional data. The pre-.ntation allows for exhibition of the

weight vectors, a decision region map, and a display of the actual data point being

presented to the neural net.

The user may select any of a number of statistically distribution patterns for

training the network including gaussian, random, chi-squared. In addition, the data

miy be distributed over limited regions such as, squares, triangles and crosses. The

net was trained a number o' times to verify that the nodes is distributed over sta-

tistical optimum regions as predicted by Kohonen (Kohonen, 1986).

In Figure 13, a square bounds a region of gaussian distributed data. The input

distribution box shows a plot of the points as they are presented to the net for

training. The yellow Kohonen decision region map shows how the Kohonen output

nodes are distributed across the input data. Each intersection of lines represents

a Kohonen node. The position of the node is set according to the corresponding

position of the weight vector in space. Since only two weights are connected to

each node, the node can be regarded as a position in the decision region. Notice

how the nodes reflect a higher concentration in the central region where there has -l

been more data presented. To facilitate tracking data, nodes in one corner are

colored white, while the remaining nodes are colored magenta (purple to everyone
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Figure 13. Gaussian Distribution ove a Square
Note: Grid line are close together in the center where mre data has been presented.

but computer graphics specialists). The color code represents an arbitrary partition

into two clases. In every distribution, the white samples will represent 25 percent

of the input data.

As you can oft from Figure 13, eme though the white dots occupy only &

small region of the input vectors plot, on convergence, they occupy one quarter of

the Kohonen map nodes.

This is always the case (under ideal conditions). The number of nodes per

class, is proportional to the distribution of the classes within the entire data sample.

Look; at the Kohonen decision region map, the yellow grid lines are close

near the center than on the fringes. This represents how the decision region allocates
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Figure 14. Gaussian Distribution over a Cross
Note: Number of white nodes is about 25 percent just an white input data is about
25 percent.

mome hyperplanes to the reg*o= ., ere there is a higher. ooucentrtion of da"a Each

intersection of a grid lin mp,~aeuts a Kohomen node- This self orgsnization of data

used an an input layer to another type of network may improve the performance of

a network with synergism between the two layers.

4-4.S KoAwmes Self-Orgauwsitio and Mea.wi'ed Deta When the two dirm-

sion problem is extended to three dimensions the results began to break down. ff a

Kohonen preprocess of the input data is expecte to be usefuil, then each node must

become a dear winner for a particular clasm. With three inputs to the Kohonen

network the results were mixed.
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Although, clustering of the nodes to a distinct class was exhibited, a number

of nodes were isolated away from the central group. 1 u-ther, dynamic analysis of

the net revealed that under training, nodes were changing from one class to another.

When the Ruck data was used to train the net, the effects were more se-

vere isolated nodes, disjoint groupings, and inconsistent winners. Obviously, self-

organization, though proven with ideal data sets, will require some modification to

the training algorithm for use with les than perfect data. These deficiencies are

also reported by Robert Hecht-Neilsen (Hecht-Neilm,1987) and Dan DeSieno (De-

Sieno,1987) and otherswho propose several improvement of the training method.

The modifications were included in later models using Kohonen self-organization as

part of the network. However, these improvements were not added to this particul .r

,emonstration.

A later section will discuss implementation of these improvements. The next

section will return to MFB. While, self organization is proposed as a method to

optimize neural network topologies and training complexity, self-organization lack a

fundamental capability necessary for pattern recognition.

The next section evaluates MFB with respect to measured data, and the fol-

lowing section can discuss combination networks.

4.5 Back Propagation Of Error

Kohonen maps cannot perform classifications, only create a self-organized clus-

tering of the input data. Additional effort is required to relate these clusters to a

particular classification. In the next section back propagation, used with the Ruck

and Roggermaun data, is consider for the classification mechanism. Back propa-

gation will be used to bridge the gap between organized data and classified data.

This section will discuss two critical issues related to neural networks: numbers of

interconnections, and training difficulty.
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Figure 15. Kohouai Map of Ruck Data

Note Data of similar claus indicated by color do. not clusa and many node
remain unused.
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Using artificial neural networks to solve pattern recognition problems requires

a tradeoff analysis between system requirements. For an optimum system, the com-

putational complexity must be minimized while at the same time maximizing the

classification accuracy. Not only are the two requirements usually mutually exclu-

sive, the relation between theme goals is not well understood and are complicated

even more by real world considerations i.e. multiplicative and additive noise.

4.5.1 C74a.cal Analysis for Pattern Recognition The method of k-nearest

* neighbors is used for the initial evaluation of the Ruck and Roggermann Data. Clas-

sical methods for pattern recognition dictate using an Euclidian distance measure-

ment to the nearest neighbor exemplar pattern. These distance measurements are

compared to the k nearest vectors around the test vector in hyperspace. If the ma-

jority of the neighbors are a specific class, the exemplar is classified accordingly.

The Ruck and Rogermann sets were analyzed using this criterion. The results are

a measure of the internal consistency of the data. Table 4.5.1 shows the results.

Neighbors Rogermaan Target Roggermnn Image Rack Image 1S1 73 82 83 .
3 T7 76 75 .
5 78 71 67 .

7 78 73 71"
9 77 76 73'.

Table 2. Nearest Neighbors Percent Accurate Classification

Table 4.5.1 shows, for the three data sets considered, what percent of the

exemplars would have beeu classified correctly if the decisioc criterion was the class

of the majority of neighbors. Column one indicates the number of nearest neighbors

considered.

Nearest neighbor analysis shows that the data lacks internal consistency. For

any classification scheme to work well, the data should be clustered in some manner.

//
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The table measurements demonstrate that at least about 25 percexu of the time, for

all three data sets, the nearest neighbor represents a different class. This certainly

can affect neural network training. It means that at least one quarter of the time

the exemplar pattern conflicts with previous training. In effect the net is being lied

to. The result of such lying is that training time is increased, and the net size mus,

be increased. To accommodate such irrationality in the data, the network must

memorize the irrational exemplars on a one by one basis.

To test this hypothesis a double disjoint test set was constructed and used to

train a MFB network. The test set consisted of four, three-input vectors divided

into two output classes. The network could solve this problem with a 2-3 network

in about 80 training iterations. The notation 2-3 indicates two nodes in the second

hidden layer and three in the first. The notation relates to the graphic displays, with

the number of nodes nearest the output, at the top of the screen coming first.

The number in tie other layers, input and output is fixed by the problem. By

adding a fifth vector which was very close to the forth vector and defining the class

as different, it takes a 20-30 network with 30,000 training iterations. By adding only

one training vector, the complexity of the problem was increased by a several orders

of magnitude. This is a constructed example of an ambiguous decision region. Am-

biguous decision regions are the weak point of back propagation. Any improvement

to back propagation would need to address this problem.

For these reasons, to determine the size network for a particular pattern recog-

nition problem, consideration must be given to the structure of the input data. The

size of the net is related to the number of separate clusters of data in the decision

region. If the structure is unknown, the only alternative is trial and error.

Analysis of the Ruck and Roggermann data sets partially demonstrate this

hypothesis. Simple back propagation netwcrks were used for analysis with similar

results. The dynamic analysis tool was used to identify exemplars which the network

had trouble learning. When these exemplars were removed from the training set,
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Figure 16. Disjoint and Ambiguous Decision Regions

Note: Multiple disjoint decision regions problems are easier to solve than ambiguous
decision region.

58



the percentage of correct classification became near one hundred percent.

For the details of the Ruck and Roggermann data analysis, see the appendix

A and B.

The number of independent decision regions could be determined using self-

organization methods. A single layer Kohonen offers a sort of nearest neighbor

classification where each output node classifies a particular decision region. Each

node, in fact, measures the distance between the average of a number of exemplars

just like a k nearest neighbor classifier.

The result of using Kohonen type mapping as an input to another type of net-

work is an intermediate, unclassified representation of the input. The complexity of

the data to the output layer is greatly reduced and the req,,irements for construction

of the classifying layers are better understood.

The principle drawback to the generalized self-organizing net is that the un-

supervised reduction of the decision region may not result in a distance preserving

mapping. Such is the case when the input data is greatly interspersed. It seems

that examining the number of nodes required for showing clear winners, that is all

nodes are not winnng for one clan then later winning for a different class, would

give insight into the number required for a supervised multilayer perceptron model.

Ambiguous input data is the greatest hinderence to MFB neural network training.

The next section will discus a method to reduce the network size for back

propagation networks. This method was suggested by Siest.na (Siestmalf87). The

technique is tailed network pruning.

4.5.2 Neural Network Pruning The initial weigLt setting affects delta rule

training as well. When u-ing random numbers ior the initial settings, sometimes the

network will train quickly and sometimes, not so quickly. J. Sietsma has suggested

there are additional consequences of poor initial settings. She feels, and experiments

have demonstrated, that sometimes m, -e nodes are required to find a solution using
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a given weight update algorithm, to a mapping problem than are actually required

for a minimum node solution.

As a feedforward back propagation network trains, it appears that some nodes

contribute early on, pushing all the weights in the general direction of a solution,

but in the end become unnecessary.

As weight values approach a solution, one of several thiu.p can happen to a

node. First &.l the weights connected could converge to zero. In another situation,

weights will line up with another set of weights causing redundancy. This occurrence

has a reciprocal as well; a set of weights leaving a node can duplicae the coirnliment

of another set of weights.

t nalysis of the weights for redundancy ana impotence would be difficult to

automate, but the consequence of these things could be determined by dynamic

analysis of node firings. Candidates for pruning could be determined by observing

their action under training.

The easiest to spot is a stuck node. Any node that fires all the time regardless

of input, can be eliminated by adding, individually, the value of weights to the

threshold of the node above it. The second way is to identify tandem nodes. If two

nodes are acting in tandem, one can be eliminated. The converse is also true, if two

node are acting in compliment to each other, that is, one is high while the other is

low, one can be eliminated.

Experiments with node pruning have shown that a large node configuration can

be red-iced to a very small configuration. Using the Ruck data, a two hidden layer

20-26 net could consistently be reduced to a 6-5 net. While consistent convergence

could only be obtained on the larger net, occasionally convergence could be obtained

with as small as a b-5 net and still retain 100 percent accuracy on the training set

and 74 percent accuracy on the test set.

Node pruning demonstrates that fewer nodes are needed for an implementa-
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tion of a neural net problem than are actually necessary for training. Still while

pruning is useful for back propagation network optimization, it left unanswered the

basic question. How many interconnections are require to solve a particular prob-

lem? Kung (Kung,1987) tries to answer this question by using algebraic projection

analysis.

The number of hidden units per layer dictate the space partitioning separability

of the network. The more units per layer, the finer the partition of the decision region.

The work of Kaczmarz suggests that the number of nodes required can be calculated -

(Kung,1987). Unfortunately, a priori knowledge about the decision space is required.

This restriction is not acceptable in most real problems as decision region topology

cannot be determined without statistical analysis of the data.

The solution may lie in self-organization techniqucs which map the input data

into well behaved functions. These functions could take advantage of the Kacznarz

Algebraic Projection technique by forcing the data into a well behave decision space.

A candidate is the Kohonen learning rule.

Unfortunately, as shown previously, the Kohonen decision regions are not al-

ways well behaved. A first effort to study the integration of two system is the

counterpropagation network. The next section discusses counterpropagation which

may be modified to make the decision regions better behaved.

4.6 Counterpropagation

Counterpropagation networks (CPN) are described in an article by Robert

Hecht-Nielsen (Hecht-Nielsen,1987). A CPN network was implemented in the lab

without good results, except for simple problems.

Counterpropagation is a multilayer feedforward network with a Kohonen orga-

nizer on the first layer with a Grossberg outstar on the second. It has two additional

layers use to train the network.
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Figure 17. Counternopagtion

The counterpropagation algorithm was implemented exactly as suggested by

Hecht-NIeiNA and tested against the Rack ad Roggermana Data. Classification

accuracy was significantly less that the accuacy from a MFB. On the Rack data,

while 100 percent classification was a achieved on the training set, only 50 percent

accuracy was noted on the tat set. The MFB classified at 100 percent training, and

74 percent test. See appendix A and B.

As suggested by Donald Woods et al (Woods, 1988) two modifications were

made to the Kohonen layer of the counterpropagation. Woods, Hecht-Neibm and

Deseino all suggeted consciene be added to counterpropagation and Kohonen maps.

Deseino suggested an implementation. (Deseino, 1988). A Kohonen layer with a

conscience is the first step to the hybrid network.
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4.6.1 Conscience Experiments related to the thesis effort, indicate that Ko-

honen works well for data sets calculated from some types of probability functions.

For example, a two dimensional input based on a variety of probability density func-

tions, including constants, Gaussian, and chi-squared were tested. By defining a

region in space to be a particular clas, then color coding the classes, data clustering

could be tracked by noting winning regions on the Kohonen map. Clw'es seemed to

separate well for calculated data. As expected, the number of nodes which won for

S rticular class was related to number of times the class was used as an exemplar.

The results were mixed for higher dimensional data. Three and four inputs were

tried, and completely fell apart for measured data like the Ruck and Roggemann

sets.

Bemause of the mixed results, modifications to the Kohonen training were con-

sidered. A few suggestions were found in the literature Rumeihart and Zipser

suggested two things. The first was to add a distance bias to each processing el-

ement. If a node ;ins a competition the threshold is increased so the chance of

winning is decreased. The second was to update not only the winning weights and

neighbors, but the losing weights as well just not as much.

Both fixes would tend to force loom, as well as winners, toward the centroid

of the input data vectors. Duane DeSieno suggested an elegant algorithm for imple-

menting these concepts. He called it a conscie.ce.

The process requires addig a data structure to the Kohonen net. The structure

can be implemnted as an array equal in size to the array of Kohonen nodes. For

discussion purposes, these are referred to as probability bias nodes.

The algorithm impacts the training rule in two places. First in calculation

of the probability bias and second in the calculation of the winning node for the

Kohonen competition. The actual update of the weights remAins the same.
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The probability bias array is filled according to the formula:

p' =p 4 ' + B(y, - pg) (5)

The constant B is an adjustment parameter. DeSieno suggests 0.0001. C is a constant

which controls the influence of the conscience. The larger C, is the more probable

that all nodes would win the competition an equal number of times. A value of one

was used for these experiments. The rule to select the winner of the competition is

modified to add a bias term to the distance before selecting the winner. The bias

term is:

b, = C(/IN - p,) (6)

where N is the number of nodes in the competitive or Kohonen layer. The conscience

rules were implemented on a hybrid Kohonen-perceptron net with good results. After

implementation, it becomes obvious why many Kohonen nets don't work well for

measured data. All the data points are closer to each other than any of the randomly,

set initial values. A handful oi nodes will dominate the training. The rest will never

be adjusted.

The experiment offered insight into several elements of Kohonen training. One

consideration is the relation of the initial weight settings. If the initial weight settings

are orders of magnitude away from the input vectors, the first vectors adjusted will

dominate the training. In other words, if the initial neighborhood size doesn't cover

the entire map, any vector not adjusted the first time through will probably never

win a competition again. If the magnitude of the training vectors are all very large

and the initial weights are set sma:I, on the first pass one weight will win and there

after, always win.

Conscience inserts a probability bias into the distance comparison before the

winner is selected. Consequently, all nodes shold have an equal probability of firing.

A difficulty was encountered selecting the parameters B, and C. Work with the

hybrid model suggests that the value suggested by DeSieno is not generally applicable
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to all problems. Using a value ten times his value yielded better results. The other

value C should be fixed at one. DeSieno actually uses two adjustments where only

one is needed. Either of the two equations could be used fer conscience alone. A

more intuitive approach would be to set the probability bias to:

pi - ounti/COUNTe,, - 1/N (7)

count, is the number of times a node has won. Barmore arrived at a similar

equation independently (Barmore, 1988), he uses a win rate disparity of 1.5 before

the conscience inhibits a node from winning. When B is eliminated, and C in the

second equation becomes a relation between the excess wins, a small number between

(-1/N) and (1/N - 1), and a weighing factor which allows the conscience to kick in

sooner. The difference between the DeSieno method and that used here is that if

pi is greater than an arbitrary small value the node is remove from the competition

completely. The DeSeino equation has the effect of a weighted, conditional removal

based on the number of times a node has won.

Both equations work well, but the second is a little easier to adjust to different

ranges of data. The results demonstrate why a counterpropagation model has little

chance of working outside of well behaved input vectors and initial weights set to

represent a distribution similar to the training set.

4.6.2 Weaknes of Counterpropagation The counterpropagation model has

three primary weakness. It lack conscience;, usually, only a few nodes win the distance

competition for most real data sets. Second, with normalized inputs all vuntors are

mapped to the unit hypersphere. Finally, counterpropagation isn't able to solve the

disjoint region problem well.

Since the input vectors must be normalized, exemplars are limited to the unit

hypersphere, no differentiation can be made between vectors which are related by a

scaling factor. The problem can be overcome somewhat by minimizing the distance
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measurement instead of madmizing correlations. In this way both (1,1), and (2,2)

will be mapped uniquely in the decision space. This difficulty is overcome by re-

placing the dot product of the input with the weight vector, with a simple distance

measurement.

A third weakness is partially a result of using the Grossberg outstar for ct -

sifying the disjoint regions. To solve a disjoint region problem the outpu, to the

classifier shotOd have an unambiguous one or zero at the output node. Tf a Kohonen

node sometimes wins for class a and som-times for class b, the outitar weights will

oscillate between the two. Convergence is not possible. Using c-.aence can ensure

a more efficient Kohonen layer to prevent ambiguous nodes, that is nodes which fire

for either class.

4.7 The Hybrid Network

By taking the weaknesses out of the .ounterpropagation network a more pow-

erful network is established. A conscience is adied to ensure maximum efficiency

of the Kohonen layer. A multilayer perceptron replaces the outstar layer. The final

step in constructing a hybrid net is to improve the interface between the Kohonen

and perceptron layers. The counterpropagation model passes along only one piece of

information to the upper layers, the Kohonen competition winner. The winner spec-

ifies which set of weights most closely reflects the input vector. More information

may assist the upper layer in making a classification. Hecht- Neilsen suggests passing

more information to the upper layer. He suggests passing not only the winner, but

second winner, third etc. The hybrid network inherits the same weakness, only one

node at a time can pass information to the multilayer perceptron model. To improve

the performance of the hybrid net a different interface should be used to pass more

information to the perceptron layers.

The obvious solution, to pass the distance directly, was tried with only partial

success. For small toy problems, convergence was found easily. The model was

66



Hybrid Propagation

Itace l/( + ddtait

layer.r

N Pe:Frsptidolyru ooenupateru: fKoregh aodjutns aI

Second ~ 3 hdelaruSda pro p to n x

67



constructed and tested. For noiser data, like the Roggemnan set, convergence in not

possible for moethan a few samples.

Figure 19. Hybrid Propagation Envimonment

The solution is baued on seding a weighted composite of the winners In other

words, a high number is sact for the winner, a sightly lower number for second and
so on. A convenient function that performs this conversion is similar to the sigmoid

function.

The value zi is a distance measurement for a particular node. A is a scaling constant

lea than one. A typical value for A is 0.08. This value inversely scales all distances

to a Dumber between zero and twenty, The improvement in the performance of the

net is dramatic.
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The result of using Kohonen type mapping as an input to another type of net-

work, is a new intermediate, unclassified representation of the input. The complexity

of the data to the outiut layer is greatly reduced and the construction of the output

net is much better understood. Using a rule of thumb, three first hidden layer nodes

for every Kohonen node, the network always converged in few thousand training

iterations. Network pruning seem to reduce the number of interconnections even

more.

The difficulty of this approach is the intermediate representation of the data

may not be a good vector quantization of the input. Because the weight vector

associated with each Kohonen node tends towards the average of a number of close

exemplar, convergence is guaranteed if the number of elements in the Kohonen layer

is greater than the number of distinct decision regions in the input data. That is, if all

the nodes are used. This is something unknown a priori. The number is bounded by

the number of exemplar vectors used for training. As the number of Kohonen units

approaches the number of exemplars, the solution degenerates to a simple table look-

up without generalization. To test the hybrid network, it is important to demonstrate

exactly what type of problems are better solved using a new type of network. At first

it was considered that the hybrid net would scale better for larger numbers of disjoint

regious. This hypothesis proved incorrect. Back propagation scales very well The

reason, of course, is obvious. As the number of disjoint region increases, each new

region can take advantage of previous hyperplanes to partition the decision region.

By appropriately placing the decision regions, sometimes no more hyperplanes are

needed to make the distinction. The real advantage was unexpected. By creating

ambiguous decision regions, that is placing two exemplars of dissimilar classes close

together, hybrid propagation performed better.

The first experiment involves using four exemplars with a fifth used as a spoiler.

The fifth exemplar was placed a small distance away from the fourth exemplar as

indicated by the distance column.
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Figure 20. The Hybrid Network Test Problem
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These measurements are shown as five regions. In the second test the num-
.1

ber of spoilers was increased to four, consequently every decision region was made

ambiguous.

MFB Hybrid _ __

Net Size Regions Distance Cycles Accuracy Cycles Accuracy

2-2 5 1 800 100 1000 100
3-5 5 0.5 10,000 100 1500 100
5-7 5 0.4 4700 100 1500 100
5-7 5 0.2 14,000 78 6000 100 -A

5-10 5 0.2 20,000 87 6000 100
10-20 0.2 20,000 85 5000 100
5-10 5 0.1 50,000 86 10,000 100
5-10 8 0.5 18,000 100 10,000 100
8-15 8 0.3 26,000 100 10,000 100 "
10-20 8 0.3 18,00v 100 10,000 100
5-10 8 0.1 50,000 0 2,500 100
10-20 8 0.1 50,000 0 5,500 100
15-301 8 0.1 50,000 0 5,500 100

Table 3. Back propagation vs Hybrid Net

Note: In every category hybrid propagation out performs Back propagation for this
class of problem. The problem under consideration is three input, two output disjoint
region problem. The first case uses five exemplars. Four are distinctly separable with
one ambiguous exemplar. The ambiguous exemplar is the same as a one of the other
exemplars, but moved an arbitrary distance away and the class is changed. This
distance is noted in he distance column. The second case increased the number of
ambiguous decision region to four, each exemplar has a very close compliment of the
opposite class.

4.8 Summary

The hybrid net seems to work similar to a nearest neighbor classifier. The

operator selects a number of Kohonen nodes. The number is an estimate of the

number of decision regions. In practice a few more are required due to inefficiencies

in the conscience. The Kohonen layer training moves the weight vectors attached

to these nodes toward the average of a group of exemplars. For example: if five
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Kohonen nodes are selected, then each of the five nodes would represent an average

of the group of exemplars in a region around them.

The experiment is based on the assu-,.otion that only a limited number of data

clusters exist in the decision space. If the training vectors are consistent then each

should lie within a reasonable distance of these data clusters. Given that the number

of data clusters cannot exceed the number of training vectors, it seems reasonable

to assume that the complexity can be controlled Ly limiting the number of vectors

used foL training.

The question becomes, how well does this limited set of training vectors relate

to the entire ensemble of input vectors. If the training set were perfect, the data

clusters would be identical to the number of classes. The worst case would be where

there is no clustering of data at all. In this case the number of independent decision

regions is equal to the number of exemplars. A typical case is some number in

between.

The hybrid net expects one Kohonen node for each data cluster. Because of

the conscience training algorithm, in practice more nodes are required to ensure

good separation between nodes. The back propagation network stacked above the

net assumed simple decision regions, and was set to twice the Kohonen layer for the

first hidden and equal to the Kohonen for the second hidden layer. Experience has

shown that for the simple, binary type output of the Kohonen layer, these values are

sufficient for convergence. Actually, using a multilayer back propagation net for the

output of the Kohonen layer is more than is necessary. For this simple classification

problem Hopfield or Grossberg outstar would be more efficient and train faster. The

back propagation method will allow continuous data as input vectors. This flexibility

allows the use of more complicated functions as the interface between the Kohonen

layer and the back propagation layer.

The hybrid Network offers a solution to two difficult problems encounter in

other networks. The multillyer perceptron requires long training times when ambi-
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guities exist in the decision regions. The counterpropagation network requires less

training time but is unable to solve the disjoint region problems without efficient

use of the Kohonen layer. The hybrid net offers a compromise. The hybrid net can

obtain k nearest neighbor accuracy in a few tens of thousands of training iteration.
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V. Recommendation and Conclusions

Developing the hybrid neural network embodied four separate aspects or phases.

The major effort involved the development of an environment for dynamic analysis

of neural networks. Using these tools, the next phase involved the analysis of several

commonly used neural network topologies: Kohonen maps, back propagation, and

counterpropagation. After gaining insight into how the networks function, several

data sets were analyzed. The final step in the process was to take the information

gained in the first three parts of the study and develop a better learning process.

The results of these efforts are the Hybrid network and the NeuralGraphics software

package.

5.1 Graphics as an Analysis Tool

Graphical analysis of a neural network under training is useful in several re-

spects. The effectiveness of a particular node can be observed, tested or the node

can even be removed. The pruning function of the study environment was used to

demonstrate this. Weaknesses in a particular training method could sometimes be

detected. For example, graphic displays demonstrated that the Hecht-Nielsen Ko-

honen layer update rules resulted in only a portion of the nodes being used at alL

Once detected, conscience was added and the efficiency of the Kohonen layers for

both counter and hybrid propagation was improved.

Error surface analysis alic ed two different weight update rules to be compared.

Progress of the error reduction as a function of training cycles could be tracked from

the initial conditionp to the final solution. So much could be observed in the displays,

that it wasn't possible to investigate but a portion of the &iomalies noticed during

observation.

Spotting weaknesses in training methods is a useful application of graphics

to neural networks. The fact that the Kohonen nodes were not all contributing to
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a solution, was obvious with a graphic display. Early versions of Kohonen based

classifiers showed that only a small portion of the nodes were consistently winning

the competition. This lead to the inclusion of conscience in the training algorithm.

Examination of the ranges in the weights lead to a better understanding of
"pathologica1 networks", network no longer capable of learning. When the weights

are starting to grow without bound, no amount of training will bring the network

back toward convergence, and training could be terminated. Other anomalies were

noted as well. For example, it was noted that generally the majority of the weights

were zero. The first major contribution of this research was the graphics environ-

ment which allowed detection of network deficiencies. Discovery of these deficiencies

allowed new neural network training paradigms to be designed.

5.2 Criterion for measuring error

A difficulty was encountered in establishing a criterion for measuring the per-

formance of a neural network. When comparing the results reflected in this effort

with results of similar studies, different error criterion prevented exact comparison.

This study uses three methods to measure error. Each of the three methods varies

from a very strict criterion to a very loose measure.

For comparisons of one data set to another, it seemed most convenient to use

a very strict measure of error. A classification of correct for a given input vector

indicated that the difference between the actual output and the desired output was

below a specified threshold for every output node. For a non-ambiguous classificaton

a value of 0.2 was used. For a correct, but less definitive classification, a value of 0.5

is used.

Unfortunately, es the width of the output vector grew, as with the sine wave

problem, the less likeiy it becomes for all nodes to classify correctly simultaneously.

Consequently, measured success of the network appears to go down. For the Fourier

filter problem, a minimal criterion is used. Percentage of error is based on each
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independent decision. Changing the error criterion for the Fourier problem was

necessary to prevent misinterpretation of the results. Under the forme method the

networks would show only 80 percent accuracy, while identifying each individual sine

wave 98 percent of the time.

Using and understanding different error criterion is important for two reasons.

First, for comparisons with other work, the methods used must be at lease relatable.

Second, unlike most problem solving techniques, the goal is not to determine a 100

percent accurate solution. The goal is to arrive at a reasonable guess as quickly as

possible. For these reasons, understanding the error criterion becomes central to

neural network study. Comparison of different techniques is a mat*ter of evaluating

training times and classification effort for a solution that is arbitrarily close to 100

percent. If the completely accurate solutions are necessary, some technique other

than neural networks may be more appropriate. In the context of problems where

absolute accuracy is necesary, neural networks may be used to limit the search for

non-neural network solutions.

After establishing an error criterion appropriate for a particular problem, the

P next step was to construct a network with the minimum computational effort. The

computation effort required for a given problem is related to the size of the network

and the number of interconnections.

5.3 Determining Network Size and Truining Time

The questions: how long should the net be trained, and how many nodes are

required for a particular problem ? occupied many hours in this effort. The author's

conclusion is that the answer these questions depends almost entirely on the data.

For each problem considered here, the number of disjoint and ambiguous decision

regions in the data set dictated the size of the network required. Also, the results
|I

seems to indicate that it takes a lot fewer than previously thought. A single node

seems very powerful. As pointed out by the Ruck and Roggermann data, training
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until no changes are detected in the test set accuracy may be good enough for real

problems. It appears that any reasonable problem can be solved in a few thousand

iterations. Training after that point is an act of memorizing tke special cases. That

is, when a tank exemplar is presented to the net for training and nearest neighbors

(in the decision space) are jeeps, the net must memorize what makes that tank

different from all the jeeps around it. Such memorization does not apply to real

world problems. Generally, classification will be made on unique data taken directly

from a sensor system. Not only is this memorization very expensive in training time,

but requires additional nodes to handle the memorization of particular exemplars. If

the function of the network is table look-up, the additional resource may be justified.

But, if the data set is infinite, as data coming off the backplane of a camera would

be, a net only needs to learn generalities. Two factors were noticed which affected

the smallest possible network, momentum and network pruning. A first effort to

establish a minimum node size tended to overshoot the optimum. Overestimation

may be a natural consequence of using a biological model. With the human brain

using hundreds of billions of neurons to solve problems, the temptation is ever present

to use more than necessary.

Network pruning is a good example. The first published analysis on the Ruck

data used a 100-200 network (Ruck,1987). Subsequent efforts here reduced that

number to I0-10. Network pruning reduced that number to 6-8. Using the momen-

tum term, reasonable results were obtained with a 3-5 net. With this information

the Roggermann data resulted in a 20-50 net which pruned to an 18-47. The authors

conclusion is that pruning is most useful when too many nodes are present. When

starting with a near optimum number of nodes pruning is only superficially useful.

The momentum parameter may be just as important as pruning.

Most of the first neural network models did not include a momentum factor

in back propagation algorithm. The computational effort to include momentum did

not seem a fair trade off for decreased training cycles. By saving all previous weights
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each time, computational effort was predicted to increase, at a rate greater than the

expected reduction in training time.

Late in this study, the Piazza work (Piazza,1988) suggested that momentum

carried additional benefits, benefits both in accuracy, and the ability to jump over

local minima by smoothing out the error surface. With the inclusion of momentum,

net size on the Ruck data reduced from a 10-10 net to a 3-5 net with only a tiny

reduction in accuracy (5 percent training data, none for test data). No additional

benefit could be gained from pruning. Going from 200 nodes to 8 suggests that each

hidden node may be more powerful than previously thought.

Each node can be considered more powerful still, if a node is not expected

to memorize specific exemplars, but only general trends in all the exemplars. The

Hybrid network is an attempt to exploit this observation.

The second major contribution of this effort wa the study of how network

training and node requirements relates to the problr- rnder consideration. This

research effort showed what types of problems are difficuit and how these difficulties

can be avoided.

5.4 Application of the Hybrid Network

The hybrid network is an extension of Kohonen mapping and counter prop-

agatiun. Using a simple distance metric, hybrid propagation maps the exemplar

patterns into a new decision space. This new decision space seems to reduce the

burden on the back propagation classification lay...

The Hybrid network required an additional layer of hidden nodes, so the train-

ing time increased some to allow the Kohonen layer to organize. Also, the first

hidden layer usually needed to be larger than the first hidden layer in back propaga-

tion alone. However, discounting the time to organize the Kohonen layers, training

times were reduced by a third to a half and the network showed a greater ability
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to memorize. This ability was noted in analysis of the Roggermann target data

analysis.

In general, the Hybrid net works better than a multilayer perceptron for prob-

lems that include ambiguous decision regions. For small clearly distinct decision

regions, the multilayer perceptron seems to be more efficient more efficient.

The third major contribution of this research was the hybrid network which

outperformed other networks configuration for specific types of problems.

5.4.1 Summary Of the four neural networis considered, each had its own

strength and weakness. The Kohonen maps cannot solve classiation problem

without some interface to a classification network. Both Kohonen and counter-

propagation were inefficient without augmenting the weight update rules to include

a conscience. Even with a conscience, the nodes were not one hundred percent effi-

cient, mapping one node to a one decision region. With a Multilayer perceptron, as

the number of disconnected disjoint decision regions increased, the number of nodes

required to solve the problem increased in a non-linear fashion.

The Hybrid network shows promise of being able to solve the the ambiguous

decision region problem of the back propagation algorithm. As dissimilar data points

moved closer together, the Hybrid network the number of nodes required seems

to increase linearly. Also, the Hybrid network is a useful tool for data analysis.

Still, more work could be done to improve the efficiency of the Kohonen layer. The

conscience rule doesn't seems to map exactly from one decision region to one kohonen

node. This may be possible by using some other paradigm to train ar' set the size

of the Kohonen layer.

5.5 Recommendations

The Neural-Graphic study environment is like a window into a complex math-

ematical process. For every question, answered several more were raised. For ex-
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ample, t was noted that generally the majority of the weights were zero. Most of

the questions associated with these types of observations went unanswered. Future

investigation may want to consider the effects of removing near zero valued weights.

In implementing neural network in dedicated processors, real world constraints

should be considered. An important consideration for making integrated circuits

would be the constraints on the size and accuracy of the weights. In a chip these

weights could be implemented as resistors. Further investigations should try hard

limiting the weights to different ranges. Also, the dynamic ranges requirements

could be explored by adding varying degrees of noise to the weight values. This

would provide insight into how accurate the weight values would have to be.

The NeuralGraphic software package allows rapid study of segmentation and

vector quantization paradigms. As many government organizations are purchasing

commercial software to perform these types of task, making this package amilable

could save the Air Force thousands of dollars. To make this package of commercial

quality would only require porting the source code to several types of machines.

Although NeuralGraphics was written for a Silicon Graphic IRIS, with only small

changes it could be made to run on a Sun workstation, a Micro Vax III or even a

mainframe Vax (without the- graphics).
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Appendix A. Ruck Data Analysis

The Ruck data set is a collection of 52 exemplar vectors and 27 test vectors

extracted from laser radar range imagery. The input vector features are base on

Zerneki moments which offer position, shift, and scale invariant to the exemplar

pattern.

The network configuration consists of 22 inputs and four outputs. The four

output indicate classes related to tanks, jeeps,trucks and POL tanker vehicles. The

number of hidden units is indicated by the column Netsize in each o the ,ables. The

first algorithm used to evaluate the data set is a multilayer feedforward backpropa-

gation network, without theta training and momentum equal 0.7. An q of 0.3 was

used. Several values between 0.3 and 0.1 were tested each without any significant

difference in training times or accuracy. The only difference noted was that using

smaller values of 1 caused the training to converge in a smoother fashion.

The training statistics are based on 1000 random samples pulled from the

training set. The test statistic are calculated by sequential classification of a separate

test set and calculating error statistics.

A classification of right means that for every in-class vectors a value of 0.8 and

above was found at the output together with a value of 0.2 and below for each out

of class node. A guess is an indication of an ambiguous output, but still above 0.5

for the in-class node and below for the out of class node.

A. 1 Backpropagation Rules

For a ba3e line estimation of the number of nodes required, several net config-

urations were to 50,000 training cycles with the results shown in table 4.

Considering that the Ruck classification problem can be solved with a 3-5

system (three in the first hidden layer and five in the second), improvement would
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Netsize Training Test Iterations Converging "

Lower Upper Right Guess Right Guess
3 5 59.1 74.7 89.5 86.1 50,000 No
5 5 59.1 74.7 95.2 97.8 50,000 YesI10 5 66.6 75.0 94.9 97.4 50,000 Yes

10 10 68.2 74.7 100.0 100.0 50,000 Yes
15 15 69.2 74.2 100.0 100.0 50,000 Yes
26 20 74.4 76.2 100.0 100.0 j 50,000 Yes

Table 4. Percent Accuracy vs Net Size

Note: reasonable good results were obtained for the 3-5. Ntts larger than 10-10 did
not improve accuracy.

be difficult. Convergence with such a small system indicates that the data is well

behaved with only a handful of disjoint regions and no ambigous regions. If this is

the case, improvement can't be expected for either a hybrid network or a counter

propagation network.

A.2 Counter Propagation

Counter propagation allows convergence in only a few thousand training cycles,

but the generalization properties are poor. Convergence here means 100 percent

accuracy on the training data. Although the training set classifies at 100 percent,

the test set shows only 50 percent correct classification. The baseline for the test

data is 74 percent.

Probably the poor performance cannot be attributed directly to the counter

propagation paradigm. The Hecht-Neilsen model for CPN does not use the Kohonen

nodes effectively because a conscience mechanism is not included.

A.3 Hybrid Propagation

Table 6 shows the same tests using a hybrid network.
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Kohonen Nodes Training Test Cycles
I Right Right Guess

20 56.3 9.4 13.8 15,000
30 56.8 11.2 18.1 15,000
60 100.0 29.9 50.0 15,000

Table 5. CounLer Propagation:Kohonen Node vs accuracy

Note: Counter propagation demonstrates very poor generalization with good con-
vergence.

Net Size Training Test Cycles
Kohonen First Second Right Guess

10 5 0 66.2 80.2 74.7 25,000
15 10 0 70.3 85.1 70.4 25,000
20 10 0 73.3 88.4 70.4 25,000
30 15 0 94.3 98.2 74.7 25,000
60 30 0 100.0 100.0 74.0 25,000

Table 6. Hybrid Net: Kohonen Nodes vs Accuracy

Note: The Hybrid net compared to the BPN seems to trade training time for number
of nodes while retaining same accuracy.

A.4 Summary

As expected, the simple backpropagation rule outperformed all both counter

propagation aud hybrid propagation. While the CPN did converge, the poor perfor-

mance on the test set demonstrated an inability of the network to generalize. The

Hybird net classified data equally as well as the BPN, yet more nodes were required

to obtain the same perficnance. The advantage of the Hybrid net was a reduced

training time.
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main(general.c)

* D.4 TF: .I ct 1938
V IERSION: 1.0

* .4 ME: General Neemil Nort-Main Loop

* MODULE NUMBER: 1.1

* DESCRIPTION: General Parpose NtaraI NWtwork with Node Pruning

* ALGORITHM !1erbos Backf'ropugaso 
L

FILES REID: 11'ights , data file.,

* FILES WrRITTEN: Loy file. 11'iagho~ Storvd

* H.ARDIF.IRE INPUT None

a HARDIVARE OUTPUT: None
* MODULES CA4LLED: None

.4LLING MODULES: Alain Protram Shell

.4A UTHOR: G3regory L. Tarr
* 1I,51ORK .

#include "met.h

struct uewirai..net net:

#define wait(A) if((count%(A))=0O)

emtena wut nwsmo: 
3

mnt stopit= 1000000: 
3

ant con0rgtgoI.,~.et~tdn~y=100,8luOWweightsi= 100:

exteru it decisions.fwt;

maia()

/* For ,a,,tsali:ataon only*/4

hteol.= 10;

huil.jwo = 10;

INITIALIZEO;

DISPLAY-NETO;

while (Count < stopit)

/ * Rrading The inmuss allow., nragrmis/iatio* and made pruning

21:5.) .vor .30 1988 
Pate I of general c



main(generai.c)

NIAKE-INPjrT(ae.ip.nt.dof.-1):

FEEDFORWA RDo:

C'HE( K-ER RORS( net-oeatp.aiet.doft):

TRAIN-NETO:

woit(tiaplay)l SHIOW(;
if-exrntet!=O)DO-TESTO-;

make-aph(4JO.470.);
DI-SPLAY-NET();

ifta =I )IDISPLAY.-NETO:)

dasplay..eount(),

/ * Save ieeghts oni termsawlso,

writestdweigh"a);

.11:5) Nov' .10 1988 
.'qt 2 of if xuulc
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PAD.TE. 11 Awl 1988
* I 'ERSION:2. I

AM.E Dtfinaions.h
* MODULE NUMBER: 1.:!
* DESCRIPTION: Standard Dejiite.. and Mlacros

ALGORITHM: None 10
PA4SSED VARIA4BLES. None

* RETURNS: None
G (LOBA*L VARIA4BLES M5ED: None

a GLOBAIL VAIRIABLES CHANGED: None
a FILES REA4D: None
a FILES WIRITTENV: None
a .4RDWARE INPUT. None
* HARDWARE OU1TPUT:- Noeat
a MODULES CALLED: None
a CA4LLING 1MODILES: None 2

a I THOR: Grreory L. Tarr
* HISTORY:

#d~4u. GRAPHICS TRUTE

#dk4am TABLE 64
#tldtne Bytes-mor 2.iW 30

*doflno Ioopi(ON) fori=0O:i<ON;i++j

#defne Ioopj(ON) fo(j=oj<ONj++)

#deffiwa Ioopk(ON) fcWuk-O-k<ON-.k++)

#ckflaa Ioopij(ONE.TVO) for(i0:i<ONE~i++)forj=0j<TWOI++)

#"nolu HARDON RED 40

#*c4n INDETERM ITABLE/2)

Pdc4nue HARDOFF BLITE

#if FALSE

*defaw TRITE I

$.hdne FALSE 0 s

#diswii outpia 4

1i:S4.Nec .10 1988 Pogep of dejinasaow-.A



(definitious.h)

*de input 22

#ihAue hide-.one 20

#4cm.ft hide..two 26

#eudif 
fi

#ddeo line Printil\a")L

#dmfins disply 100

#d.Ane datafile ".\data~ruck -data"

#defln speing 200

#&dd e Wight- 20 T

#defin video 1.00

J:.54 EYer .i0 1988 pate f o efdroeesAh



(uet.h)

* DATE: .1 Ortoicr 1983

NV1AME: Vft.b
* MODULE NUM'JBER: i.)

DESCRIPTION: Stractuiy Defiualaos for the Nearal Nef

* .4 (TTHOR: Gvgerpy L. Tarr
* HISTORY:

#dofinc size 100

/ rtecel Definition muemaory *Ulocid dt com pile tame/

float outpfsuxe]:

flot doftjse;

float w2juizej[.isel;
Gout w2Juno2Ea~Ijwsizpj:

30

floa t2fmaseJ

fatoutp-.nask(siae).

oAm y2fmizej:

floa y2.mak(,siz..J:

&moa y2..t(sihej:
40

&moa wI-fiuoan(simj[.silej:

slome awI (uia.Jfmsiaej:

float I istizj:

float yI aeJw:

floa y I -mask (inael

seoat y lifi.J

VI:4 Nor .10 19.9* Pate Iof urI.h



(net.h)

loset WrseJ:

l&st iup~rnzej;

Amt imp-.nuwk(uizel:

imeaiy*(mj

hat ouipuc.hide.one.bide..two.in put;

21:54 Nor .39 1988 Part .0 Heilf~



INIALIZE(Itiaisex)

A DI TE: .4 aluOI 198
* VERSION: I

* NA4ME:.iaaae.w Alodai
AIOVVLE NUMBER: 1.4

* DESCRIPTION: Isalaa:sleeu of the 4mph 9 k.#dwaey.
any input test data, aud e Wae sirmrfarv. to

* .4 LGORITHM: Nome
* PASSED I1AIL ES: None
* RETURNS: Noae
* GLOBA4L VARIABLES VSED: Met
* GLOBAL VA4RIA4BLES CHANGED: Noet
* FILES RE.4D: Noe
* FILES WRITTEN. Noe
* HARDWVARE INPUT: None

H ARDWIARE OUTPUT: None

* MODULES C.4LLD: Noet
* CALLING MIODULES. Noer~

* 4ITHOR: Grrvry L. Tarr
* HISTORY.

;piachtl&4talla b

piaclude <suioih>

#madude <signaI.h>
40

#imchsde "not. k

eitefla W&t C0o4tan

(iters stract n..nral-ne et.

Simi randeno:

exteru Iit nwitsi: s

INITALIZE() INITIALIZE

21.5.5 eev .111 1988 Put( 1 of asalsdl,:e.



INTIALIZE--init..not(iuitialiss.c)I

iniiuitU:et

imt itnt( ut

coit= 0:.

loopisizeiie) net.w2filol] randoinfO:

Ioop(siwe) net.t2(iJ = riuidom():

Ioopi(.ase~ntt.%IiI randoinU:

Iooi(*sc)ne4t.IO~i = aadornO:

loopi(maae) vet.y2.niuwkij = TRUtE

Ioop.(uae) net y1.anankfiJ = TRU'E;

koopi(sae') m#4.inp.maski) =TRIIE:

looplluss) net.outp.nuwhiI TRIME;

/* G.rratce o r,,,don member kfmes -9.5sd oi 0.5 IS

QoRA ratdcon

wsNor .19 loss pare of .1 luaifi:..c



Appendix B. Roggemann Data Analysi

The Roggeman data set consists of two problems. The first is a simple target/non-

target classification based on statistical relations of an input scene.

The second problem takes a target identified from the first part and using an

expanded vector quantization of the scene make a specific classification of vehicle

type.

B. I Target/Non- aref Clasification

The input data is a vector quantization of three statistical features of the image

data. The first va~ue of the input vector is related to the ratio of the height to width

of a blob segmented from an infrared image. The second feature is a ratio of the

energy in the ob to the energy in the background. The third number represents the

standard deviation of the Uob pixel values.

The network configuration consists of three inputs and two outputs. The two

outputs indicate target (1,0) or a non-target (0,1) with one going high while the other

goes low. The number of hidden units is indicated by the column Netsize in table 7

for two hidden layers. The first algorithm tested uses a multilayer feedforward back

propagation network, without theta training and without a momentum term. An q

of 0.3 was used. Several values betwen 0.3 and 0.1 were tested each without any

significant difference in training times or accuracy. The only difference noted was

that using smaller values of V caused the training to converge in a smoother fashion.

The training set consisted of 600 samples. The training statistics are based on A

1000 random samples pulled from the training set. The test statistic are calculated

by sequential classification of a separate test set and calculating error statistics.

A classification of right means that for every in-class vectors a value of 0.8 and

above was found at the output together with a value of 0.2 and below for each out

84

7- -77.. .. . . . . . . . . .. . .



-A4

Netsize Training Test - Converging
Lower Upper Right Guess Right Gu _

10 10 3.7 52.1 2.1 60.3 No
20 20 30.1 61.0 21.0 81.0 No
20 10 40.0 72.0 48.0 52.0 No
30 10 46.7 76.3 54.0 73.0 Ne
30 30 53.4 63.10 63.0 81.0 No
40 10 48.5 75.2 43.0 75.0 Maybe
40 40 65.4 71.7 64.0 74.0 Maybe
50 10 49.9 72.8 56.0 72.0 Maybe
50 50 70.1 70.6 75.0 76.0 Maybe

100 10 55.2 65.2 55.0 60.2 No
ion 20 66.4 81.3 51.0 68.2 No
100 30 68.9 77.7 62.0 67.2 No
50 20 58.7 82.2 50.0 72.0 Yes

Table 7. MFB: Percent Accuracy vs Net Size

Note. The 20-50 net seems to be the most efficient and acmrate.

of clas node. A guess is an indication of an ambiguous output, but still above 0.5

for in class node and below for out of claw node.

Trainint was extended for network configurations that appeared to have the

best chance of converging. Training was stopped when accuracy rates appeared

stable or no longer converging.

8.2 Backvaex Prppagation Role*

For a base line estimation of the number of nodes required, several net config-

urations were to 50,000 training cycles with the results shown in table 7.

Since the problem consisted of over 800 exemplars, as expected, a larger net is

required. The large size of the data set indicates a greater probability several disjoint

regions. The fact that the data never did better than a about 80 percent indicated

ambiguous decision regions. As expected, training time also increases and to bring

the network up to the maximum performance requires over 500,000 iterations.
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Netaize Training - est Training Cycles

Lower Upper Right Guess Riht Guess I
50 10 9.2 78.71 57.0 70.0 100,000
40 20 79.0 80.7 53.0 58.0 100,000
50 20 67.7 78.7 53.0 7201 00000

Table 8. MFB: Extended Training of Converging Topologies

Note. There is no significant imovement between 50,000 and 500,000 training
cycles.

Using the weights save from the 20-50 network, neural network pruning tech-

niques were employed see if any improvement could be made in the efficiency or

accuracy.

Netsize Traing Test Training Cycles
Lower Upper Rigt Gum Rit Guess

50 20 67.2 78.7 57.0 70.0 500,000
47 12 69.0 75.7 73.0 77.0 500,000
41 12 81.7 88.7 69.0 76.0 500,000
41 11 74.0 82.7 76.0 76.0 500,000
41 11 74.0 82.7 76.0 76.0 500,000
38 7 59.0 62.0 11.0 52.0 500,000

Table 9. Pruning to Find the Optimum Size Network

Note: Pruning the network found a better solution with an 11-41 configuration.

8.5 Counter Props ga -

Because of the long training times and large net size require for convergence the

Counter Propagation net was used to try and get a measure how many complex the

decision regions are present. counterpropagation fail to classify with any reasonable

numbers of nodes.

The experiment was halted after training 30 samples on to 20 kohonen nodes.

The intent of the experimtnt is to find a less complex system than the multilayer
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Samples Kohone Nodes Training Test
- Right Right Guess

8 12 100.0 27.0 48.2
12 12 100.0 27.0 48.2
20 12 89.2 17.0 55.6
20 16 100.0 30.7 71.0
30 20 100.0 29.9 50.0

Table 10. Counter Propagation: Kohonea Node vs Samples

Note: When any more than 30 exemplars were used, 100 percent accuracy couldn't
be reached.

perceptron alone. With the 20,40-20 net, the number of interconnection for only 30

samples is greater than the back propagation model.

B.4 HY"r~ Pvepsgtatio

As expected the Hybrid net trained faste than the back propagation network.

the net size was greater than expected.

which is most probable due to ineiciencies in the Kohonen layer. By reducing

the Kobonea layer to partition fewer decision regions, the back propagation layer

can be reduced as well.

Samples Net Size Traning -Test -
Kohonen First Second Right Right Guess

100 12 20 12 93.0 61.0 72.0
200 16 24 12 81.0 53.0 66.0
300 20 20 12 926. 0 72.0
652 60 60 24 91.0 63.0 74.0

Table 11. Hybrid Propagation: Koomen Nodes vs Samples
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B.5 Target Identification Data

The target identification data is a subet of the previous data. Those blobs

identified as target were subjection to addition analysis. Eighteen statistical mo-

ments were calculated for each target. The targets could be either tanks, *rucks

or jeeps. Using an - nroach similar to that used ior the target/non-t%rget data.

Differing net sized gave the reults shown in Table 12

Netsize Training Test Converging
Lower Upper Right Guess Right Guess

5 5 66.3 81.4 60.0 70.0 No
10 10 58.3 79.2 55.0 63.3 No
15 15 63.3 81.4 58.2 61.1 No
40 20 63.2 78.4 52.5 71.2 No

Table 12. Back Propagation: Accuracy vs Net Size

Using the Hybrid Propagation Network Table 13 shows the results.

Netsize Train ing Test Cycles
Kohonen Lower Upper Right Guess Right Guess

10 10 10 3.7 52.1 2.1 60.3 25,00010 45.1 76.5 21.6 46.7 25,000
30 20 20 65.2 100.0 55.2 74.1 25,0001

Table 13. Hybrid Propagation: Accuracy vs Net Size

__
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Appendix C. Computer Source Code

This section include the computer software for several programs.
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init-net(iitiaize.c)

yra .( 0

X=((Ioat )/100-0-0.5): [10

retama i

21:55 Nor .10 1988 Pate 3 of insseai.-c



(rnakeinput.c)

DAMT .I Oct 1988
V ERSION: I

N.4ME. lknvu~
* .IODPLE NUrAIBEJ: 1.4
*DE.: CRIPTIOYN Prordt fe r file impel -of a date se.

0 .LGORITh.1I: Nome
* PASSED VARL4BLES: None to
* RETI*R.S Noern
* GL OBA4L t:4RI4 fLES IJ'ED: Noe
* GLOBAIL I1lRLIBLES CH.ANGED: Nonse
* FILES REA4D: input dots

FILES WIRITTEN. Nonse
HAR.RDWA;RE INPUT: None

0 HA4RDWAIRE OUTPUT: NVone
* MODULES C.4LZE: mis()
* CALLING MIODULES: None

0 AUTHOR: Grryory L. Tarr
* HISTOR Y:

#include "dstlmit±.aa .h"

#inditdle "not. h

#include <rnath-h> 3s

hat eiasuplars
ink %wtor:.
in& exaaI10t.*t
lut Clamors;

#dk-fna TRITE I
#define FALSE 0

#di-441. maxexaliplars RM 4

#define rnaxexaijet 200
#define rnaxwrtoe 40

inka claetAinaxexamrplar5+rxxan]: ~ na~co
floa dnji(naxexaa-wo'nmx;e~o1

los~t soL~wO0

extena flot rmndoono:

!]:.Ij Nor 70 1988 Pate I of makrinputi



init~data( makeinput.c)

diar fikenarnw[301J

static cue, sinwa.ei-i] I 4smiDY Y O8s 0)

imt do~simn =TRITE:

FILE *fkt;

mnt a.j~xx

flot Y.a:.

F~IE tfp.*fe:

dha target[']; -.

printf(*'aflata Filinaae\Am")

scan ( s"fieane).

Ioopi(-#)Iif (aiuwaveft] != filmearnwij) (do-msin FALSE;breek: J

if~doj'4u == TRITE) 4 init-iuM)

ifjfp==NtULL)4 priutA"\x*O** Fil not FomA s.a):xLO:

printr\aOata Isaldm)

iscant(Up."- Ud Ud Zd.&-rxrniplas,&exan.test.&Lveeo.&CIsaun);

output = dlasew:

input =vetr

for (i=-O-i<exaanplars+exain.tftti++){

rwcanrqrp."Ig &kdaa~iJri):

racaf ."28".t~get);

1I:5.1 VeP 10 1985 Pope f of maerspui.r



init-data-MAKE-JNPUT(miakeinput.c)

if ("Ogefflj IV') clasiJi=O:
if (taaet(l] 'As) elain~ij= 1;

0 if (&arle(J fu .' cdauijze;

if (tart(Oj == 0') eCa*ilmO;
if (tsugetO] '1') clawfijO;
if (t4rget(OJ == 2') claasfiJ 1:
if ("~iet(Ol '3') clamifif2;

if (teg*OJ == 5'4) cla.ifr3

I. relouslp);

for (i=O:ikezam.teet~i++){

fiv jOj<vectoj++)t

O~~~n staoesmpU1 deaxtxanppae:]:

* MAKEJNPIIT(x.dofndx) NMAKEJNPUT

int randx;

C iffdqoxii == TRUE) (MAKF.SINx.doft)wetuna:)

* ifirvuidx < 0 )

etype rondo) % outpt

C sample =rondo) % examplamu)

OWg f saple = rudi:
etypr clawmsanrlel:)

C wh~ri~~aa(uanpl~]1= type)

~I:J %eu .19198*Pagc 1 of makrimpalcc
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MAKE-JNPUT-data.stats-functio(uaakeinput.c)

pnntf(UXd Sd \xm.ds~e(.upkrJ.ctp) 160

foil i=Oi<vectori++ )4i]j datafsanpleffi];

forii=O a<vecto 'i++) x~i] += ifi) * rsndoto* add-nmoise-,

forlt=O:.<output:i++)

if(cia"framPlrji) doftli)=TRUE:

else daft(ij=FALSE; 170

MAN E.T EST~ x.dof9.whicm) MAKE..TEST

iti which:

sample = which:-

etype = cdasstetlumpe];

fori iO~veetor-.i++)h(jdatam1(wbhil;

furiiO:i<ou9Put:i++)

if~eisss.tvvttwhich!==i) doftij=TRt'E:.

else doftfi]=FALSE:

$&4ne 'all exam ezatrs+exantat)
Slon& neaislifs.[mxexamplaa+naexant~kstj

III ddevtsisejrrnaxexantpan+aaaexrn,.teetl;

data..$ats-unction() (atastatsfluctioli

j nt on.ij.kJosniljigal,wrong.otright:

in&C cAus.accunutsiaeJ:

lA& dist(max'.xamplamiienmp;

FILE *fnig;

textpoct( 0. 1000.0. 7OO):
210

fiol .l"ua3.g".U)
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F data~statsfuction(vakeilptt.c)

prilf("711.: I \n*.ikena"n);

pnintf("Uuaber of Sach CILaM: \at\I").

/ * Calculate Meen of tack wreo'

Ioop.(ontput) linacu.10

loqpi4aIlcxann) clam..accunm(claainrifl++;

Ioopi~output)i printf("Clas U6: U4 "icas.cuni)

Ioopj(ipr)

floopk(outpiat)

meanMklI=00
Ioop(aflexarnv)
mw=(a(iiUW = men(damiUW+daai bi-) 240

ioopk(output){

#if FALSE

/* No eaelulfe standard derveloom ' 210

Ioopj(inpiit)(Ioopk(output) suddevfklljj 0.0;

loopifoilciean)(

pnintR"U Ui U6\~~~

.tdde~cdasoiJUJ +=

mn(-ra@*(iDUI-dataft1j1j

rnwan(clem~infl-dataiiW:

loopk(imstpmit) td.jkL1sdIvI/cmarrncJ

!1J:$S .5 l N.1 3988N P41C 5 of mabeopufoix



data~tatsfunction(makeinput-c)

)line:

/ * Using sbe men for te' cla. cakulate ditance' from

right = 0:

Ioop(aflem~nt)(loopk(output) dht~fkj 0.0;

Ioopj(input)

4 ooqk(ototput)j tetup =daail-nwaa,(k]DW

dist~k += temip * np 211

temlp=diet[OI:

loopk(output) (/ pnnlf(U3.*-f .dilfh): 0/

if (temp > diot(kJ)

e nsall It

if (ClA.MtfnaiJ == lamfliji righ~t++.

/ * pnialf( , Class Xd Nearest CIad d aajm. di:

30

)printlossutlaa usift cuam$ Reaa.\a"):

fprintlfitig."Estimts using ae"Aan"):

printf!" 2d right/d \z".right.alexan);-

frtfnig.ft i~gt.t/ \z" .right.ahexau).

for (n#'= t:nn<10:nn++)4
311

1)rintf("\a Ui sourest Neighbors ".inu);

rprintf(fnig."\u Ui nearest Neighbors ".un):

totright = 0:.

loopi(examapglars)
Iloupk(exanmplars) d&atjkl 0.0:

I.?l$.Ver .10 1989 Page 6 of vuakrimpef.c



data..statofunction--morumluedata(makeinput.c)

Ioopj(input)

dunaIIOkti 0uni

leipdit(OI:j
/ * ~ ~ ~ ppaftS,eplfd cdu:%d nrighbor. 'adaj'j:L

fpnnff(fnig. S.aplc:Xd efea.:Xd neghbors '..cluassai):

right Omw;'og = 0: 
3

fiujI= 0:knn;14-4.)(

ltltp=(iS4lOl;

loopk(exaeinplair

if (Jteip > tlistfk',) &(i! k))
snall = k

/* prtnff( %*d.ld .4.l
fp"Offlfnua. ".)d .~ue.I)

350

it (etassforai1 == dawfil) right++;
oh. wroug++:.

ft right>wrong) totright++:

printIO Total right Ui XI.2t".toright,(flot)totright/(Smt )examplau)-.

rpin~niig,"Tot..l right Ui %3.2t %"
.totrightilt.(m)toarigit /lomt)exallplats* 100.);

rvkm;(rnig):

norm1alisp .dtIai) uonijalizejtlata

4 jt ij=0: 1
float samg: 370
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aaorndisedata-mitiui( makeinput.c)

nmg =0.0:
loopi(inut) "~g += dat4j(i1 datefilil;

afag =4rint)

Wpnhf Usta UNzum11ze4\&").

#dAdne PI 3.1415

MAKE.SIN(x.dof) MAIE-SIN

haag now:
imt ij.k.wbicb.wbih2.wbiclI3.which4:
smad(tionri&now) % 37 );
whaich = randi % inpoot:
ishaw = mu~dorn() * PI;
hwopi( input ){ X~il= eom((Boa )i*PI*(fnt )whida J/inputt+ plm60):) 3r1
loopifoutput) doft(il = 0.0:do(t~which]=l.O;.

=hm ranowo * Pt;
whkiu2 =rand() % input-.
Ioopi(input) xjil = x(i1+ co.(((flot)i*Pl(lSt)which2)/input+pham):
doft(whica2j = 1.0;

plat" randovy4) * PI.,
which3 =rand() % input:
kiilinput) x~ij = xfij +4 i(((lost)i*P(Bat)whic3/iupt+pmau); 4w0

Z- doft~whichil = 1.0;

pnint~mlo wmay Kapest wU Otput Bodes?"
sfaatol".&output);
inpunt = Output:
eltaunplam =o;
exaln-tit =0:. 410
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FEED-YORWARD(fe.dforwiard-c)

* DATE: V9 Sept 1-988
* I ERSlOff I

* NA.IJ Fredferwari
* MUDUrLE NUMBER: 1.5
* DESCRIPTION: Peqates Join from the so ps$ go the *sips#
* ALGORITHM: StandaM eredfemi'd rule.
* PISSED VARIABLES. Noe

RETVRNS: Naw
* GLOBAL EIRIARLES r'SED. Noe
* GLOBAL V:4fI.ALES CH.ANGED: Noet
a FILES READ: Noet
* FILES WIRITTEN: Noe

HAf4RD WARE INPUT Noe
HA.4RDWA4RE OUTPUT:- Noet
M AODU'LES CA4LLED: Noe

* CALLING MIODU'LES. Noer0

.4 UTHOR: Grery L. Tar
a HISTORY:-

#include "ne~t.a h

*il~hude <mtath.h>

exteras truct neuraI..net n*t:

lAkt ralryo:

FEED-JORWARD() FEED.FORAVARD

4 ht ij;.
41,

Ioopilinpit) if (wet isnp~rukr1 = 0.0) ,wt.inPjij=:0.0:

Ioopi(hide.~~)

fne~yIaJcekcy(net.iup.awt.wO.netAtO.&i.inpnit).

Ioop(hide.onej if (atylmakfiJ ==a 0.0) mt.yIrtiJ0.0:-

Ioop(hitle-two)
4nrt.y2fij= IwontyI.it~ nttI.i~il~n.: '

loapi(hidr-twa) itf anet.y2..mask~ij ==0.0) aet.y2(aI=0.0:.
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IFEED-FORWARD-ftndnode(feedforward.c)

Ioopi~output)

4 net-outP~ifrrsicY( he.y2.nvt.w2.n..t.t2.&-i.hi..two):)

Ioopjjlide..ooe.inpUt)

4ifhwet.y2..nmkUjJ=1.O) noctawo(ijjjj = ,wt.wo~iJUI * awiasp~jj:

I if~n#.t.yj-maekUjJ=1.O) ame~twilolib = uet~wIilibJ * net.yljbJ:)

loop(ovtpvt.hidvj.woj

I if~mwtinp-.naaktj=I-a1.) nhrt.&w2(i1Wj a mt.w2lIil n't.y2.;

f~mi

bowl. XQ.wfltmsu.9htaaj;

Ihat i.k.pount:

y = 0.0;

nu e *index.

ImOpi(owerfl y = y + xii) *w~nambectj)P

y =y - thetanumb.

reiturn flxyty.2.03)

Boat fixy(y~hardlnmi)

foty.hardia-n

retura( 1.0/(1.0 + (Gmot)e.xp(-(douh)(ardnem y)))

snnolNlxs.ys) idu

int Es.ys:.
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ftndoodo(foodforward.c)

lower yoispimgJ:

thEohuode z(aat~fxw / weightjp):

cme 0: Lhejaodk - (Iernp-imput/2;

1~ae.iu..nm~fie.,ad~ ==0.0)

4 iat.iup.nw&(the.od.J =1.0:

I met.iup...mmkjtbe.nodel 0.0: 130

hooki&.om met.I0(i - art.aw0u(thweodfi; I

cnit 1: t1wmwfre -= fternp-hidfr._on)/2.

iM~net.yl-nwAtth..modri == 0.0)

4ve&.y lmm&(Iha..node =1.0

toopihidej.wo) net~tl(iJ += oet.amwliJIhe.model;

4 ,wt.YI-m&(tw..odeI = 0.0

laophide.Iwo) mou.t1I) -m .et.*w([iflhe.node):)

beak: IS

come 2: the-mode -m Itemvp-hidvKtvo)/2: L

iflnrt.y2jmnw(tlu...odpJ mm 0.0)

4 wt.y2..nik(tlhr.uo = .0
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finduode(feedforward.c)

breamk:
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TRAIN..NET(trainnet.c)

a DA4TE: 28 Jell 1-988
* VERSION:- I

NAM lE: Trginr
a MODULE NI'MIBER: 1.6
a DESCRIPTION: Using oalpat. adjuM.s weai.i reduce error.

A .LGORITHMI: Ifrrbos ilultularfr Percepiron Backpropagahion. i
* PA4SSED VARI.IBLES: None
a RETURNS: None

G LOBAL VA4RIABLES 17SED: 1I'righl Victors

GJL05.4L VA4RIA BLES CHANGED: II'cight Victors
* FILES READ: None
* FILES WlRITTEN- Vouf
* HA4RDWARE INPUT: None
* H.4RMIt:RE Op)TPUT.- Von(
* MODULES CA4LLED: None

CAU.LLING MODULES: Main Loop

a .4U'THOR: Grcory L. Tarr--
a HISTORY:-

*dvtiaae THETA TRU1 E

*iuchide "dot mit ioam*. h" 30

#ucisde "wet. k

exteru struck neurmnjwnt net-.

*d44ue nota 0.3

flood dedxO:

float fity0 40

#defaaeiiomiil J.7

TRAINNEfro TR AIN-NET

jiot i.3(iz.J. 2(itd n:J

foopi(oistput) (do-I3fjJ dely( tiet .outpuljm.et.doft jj): 3n0

nil .w2-mornjjiJ= (optn * (IEI:3f] *nrt.v2(iJ+
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findnode(feedforward.c)

(npt.y2.msAk(thc-fodel 0.0:to

break:
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TRAINNET(trainnet.c)

/*Second idden

loopithide-ovwj
net-WIrnomolfiI (net* * M20) twt.y~fil
+ nmmntun uc* iaon~tj
0 ietyl-maakii4

1+)

/ First Hidden *

loopiffhade-oue) f deiJojJ-de~xnet.yIlfl.de2,et.wi jhide.two);.

1* mrliffb] += Seto 0 ieljJ

1oopifsnpeet)

MID " aws ieflj* upil + momu *e~Onm~rj

U#4.wojjfli += w-t.IWOnmmonijJ:

Aoot drdy(y.doat)

i'tuw'a del;

21:.7 Nap.10 .98J Pate 2 of fralmort. c
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TRAIN..NET(trainflet.c)

Bloat &Ix(x,deI.Wm.n.'ipprf)

float x.dv40.wD[9izel. 
It~o

iut n.ttpper:

flSoat deftassum;

it i j;

sums = 0.0:

kop(ispper) sum~l IuIU deliI wl~n],12

sun= x* *-x sum;

retura sum:

21:7 Nor' :3098 lPate 
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SHQW(show-c)

* DATE: I1 October 1988
V IERSION: 2.0

* NAME: Showme
* MODULE NUMBER: 1.?
*DESCRIPTION: If~td to display intrnal r/ualsem the fertpor
* ALGORITHAI:. Noet
* PASSED 1:111]DL ES: Neuce
* RETURNS: Noe
* GLOBAL VEIRIABLES USED: None

M 00.4A L VARI.4BLES CHANGED: None
* FILES READ: Nome
* FILES WIRITTEN: NMve

HAR.RDWA4RE INPUT: Noe
HARDIWARE OUTTPU-T: None

* MODULES CALLED: Non.e
CALLING MODULES: None

A 4UTHOR: Griqory L. Terr
* HI.S ORI':

#imcludo 'mefti r b

*4kfine 'fIII IE I
#dflaa FALSE 0
exntent hat dimplay.do~sin:

extfia striset aeuraluet n@4-,
etern float accuracy-,

exena it counlt.? ght.guem..good t gdeniou;

Wn 10 0: 40
W&S 11 0:
WeC 11W = 0:
int 12 = 0:
int 13 = 0:
imit 14 = I:

i 310) showinpat(netcinp)

i115) ahownodvlnet.y2.hide~tw):

V1114) sbuwroutptut(net.outp.act.doftj:.
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SHOW-shownede(sbow.c)

4 ht xjo:

prin4R Iultgayer Pe'ceptrom No4.1\s");-

ahowautput(y~doft) showontput-

flote yl; T

Weoa ij:

Soae eti'o;

lo*p(ou4tpt) pnnutV12.2t yi):ie

pnnftf('DOIT:"

Ioopi(ouitput) pritl((22 2 o lin he;

pwintf( "Count :1 \nlgkt :22.2! Urs:12. 2!a" .cimnt.
(%m4t)right/(sm1*)dmplay 100.0.
(floss )good/(&lot displayr 100.0):

kxnA(outjuitl printr("C1.u U4 %2.29 \Xa.i.

oenormey = (flot)deeisons/(Soatuhip~ay/(Ioat)ouitput *100.:

print~mDecim1@as: %3.2f \"Amthriiow/

f (Bat~ipl~y'(foa*)utpmt *100.0):

~shownOti.viya) showuOde
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shawuod.-howweighta(sha*-c)

Losnt yo;

Weha ij: Ito

Amne, ~ in

prinif ("lode Values:"):line:

loopaf a) priffif("2.m 41.yfij).lime:

I £120-

sliow-weiglaa( w,theta.IayermupperIower) SlW~gt

Wet Iayer.upper.iower:

in*la j,i:

Losiat rnaxjmaa; 130

line,

looplupper) praf l1MM) ".layer.01):ii

loopi~lower)

loopj(uppet) I it (wojlfiJ < 0.0)
rntlf401.31 ".wblreI);

elme 140
prialfV' %1.39 O.wUjffaj);)

prioitf( *\afle~t#s:

loopi(upper)f twnt % 3.69 ".thetariI))
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(menuxc)

DATE: .1 Octeber 1988
* VERSION: 2 .0

* NAME: Ale au. c
* MODULE NUMBER: 1.8
* DF'SCRIPTION: Pvrpvdes iwfevelie ovens ;suctions
* ALGORITHM: Noet9
* PASSED VARIBLES: Noe
* RITIURNS: Noe%
* GLOBA4L VARIA4BLES USED: Noe
* GLOBAL VARIABLES CHANGED: Soe
* FILES REA4D: Noe
* FILES WIRITTEN: NoeJ

H A RDWIARE INPUT:- Noe
* HAIRDhWARE OUTPUrT: NaVet
* MODULES CALLED: Noe
* CA4LLING MODULES: Noe 20

*4 UTHOR: Gmry p. Terr
* HISTORY:

extern flot add~orne:
eatteau it aetiv~isoweight.dmp~ay:
art... floa thremhod~addnoise.

*iaahtda <uignai.h>
#hawJad <sidiobh>

9bwImho *net.al ea .

eIXIuI 13* nista&remopit:
wadws struct .wurai..ut n@4;
artbwt iut eoant.rigit~godguesetet:
#dafaae TRITE i
#d~bwFALSEO0
int intml) 40

4char ucst.fi"nwi2OI:
int nuaentsrekectot=TRUE;

pndt NamUr \a");
prnntr(") ataleSOi):fh
print( (n 2) Sat.ve lh.):i
imnlr (" 3) Read ftights "W:ine:
prievif (1 4) Tomb Act/Veo0htv").ine-
prilf f" 5) Add B3@LS*.):Iine:
pfindf( 6) DILxplay Iatowals"):inP:
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new-net(menux~)

prnl ( 7) Toggle ftrors ",i.
priatf 8" ) low lot Topology *) lime;
pnnutf (" ) Data satistlcs"i;ie;1
prindt( a) Set Stop"M:ine.
gpflflt o") III? \a"):
printrif SELICTON:? )
wlect =getcharO; 4

inwitdh~aeleict)

gexitO):

exitCo);
break:,

Case V1: init-dataO:
:break, ~

cae 2': write~weights0
:break:

cewe '30: priu&f"\ater Malname: \a' )
eeanf "Is".1llenanw);
readyciglnt (Aile"Nan):
primt("\a Us Iaxtalle\A\a"fteanv);
break:

case '4': aetiv =TRITE;

break

case '6: rnntrl\aCovat between Scream Update ?\a")-.
.caat( nVA.ksbow.wrights): 2
prit~tfV'\sC*%at between tests ?\n);
sesuf("Xd",&dilplay);

break:
case IT': mistakes = TRUE;

break:
cafse '0: uysts("clea");

inistnetf).
break.

case '9'1: istit..datsAO:
dpA&_t#_ftunctioua0:
brqak:

signalISIGINT.nw. 0)
,,ewnet( { le

prisvtt( "Nw letwork Topology\a"):
prindt( "lumber in rirst Layer\n):

printR("lumbe lia Second Lftyer\n'j1;

.. !.Year .1 1 Pate !pj nuce



now-net-write-waights( zeux)

char Rnrlen. 110
4 FILE Ofr-

int ij.k:
rp =(open (Nlenaauti."r"):
if (fp==NVLL)
1primtI"\a ***e1 roe*\)rtiu:
(Meauf (fp."2d U4 U4 1 .&ouatp.&h-idetwo.&kide .oue.&input):

(seaf((p'lr &i):120

ort-w20101j=x:)

(scunrp,"2r ".x);

lopiitut~ibx) jwnf.U.e~2i

Ioopi(hidc..two) {6mcan((fp."U" ,net.& I +i);) 130

Ioopi(hide-oae) 4 beauajfp."1S".nt.tU+iI)
fscAnt( p."240 &omnt):.
IooiM,ihdc two) {hscmnffp.11 nt.y2.mk+i):I
ioopi(bitlc..o'c) 1rScanR (P."21 iat.y Lmassk+i):)
1o0001,11,10 (freanf~tp,w1U"wnet.inp..mask+i):.)

write-.weights ( write-weights

I FILE *fp: 44

int ij.k:
chaw Rienaitw{2OI:
prmstfQw\nft.?I 1aa:

fp = rot-D (fIt'iiane.Ow"):
fprint(f (rP."U U UA 2U \a" ,output,hiidt .wo,hide.onte~input);
Ioopij(oidrul.hid..Iwo)

tpri1Ap.mUC ".awt.w! (iali); I34

Iopintpt) (pnet(tp.2*u a.ne.1(i):

Iopr ieio print VIj." "n tp~i~.ij)\.nt ifJ
- Iopi( hidepoo) 4(prnt( (p.-U \a.nt.ti I:)

kwpi( his.e-two) 4 rprintRlfi."UI \m".nct.y2.nvAaki));) 1
toopi4 hitir-one) jfprimatlI p."xf \a".net.y 1-tnask(tl );)
Iokp~innuaE) frisritirp."U2 \x" .n4np-pimkilJ) I
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wuit...weights-write-doat( menu.c)

ik~,g ta()wrlte-st~lyeiglitsA

F ILE *fp;,

char fIlenauw(201;
f= Ifpen ("standard.WWl"I");

fprintf (fp.1i UA U4 U \nL"Outpu,stdetwo.t:deolc.imptit): 1

Ioopij(output.hide&wo)

Iopu( hidrj.wo.hidi..oww)

rpnnsnlrp print fpc~i~lh."j)

loopi(haite-wo) {frinRfp.'iU \n".netAtI (ij):)

Ioopi(hide.mw) {ipriiutlfp \an.ety2mAkij) )

Ioopi(hidce.oac) {tprrntf( rp,"lf \a".net.y..mkiJ):
loopifinpug) 4 fprintf~fp."21 \s".nrt.isap..m.k~ij):,)
fckw(rp):pein9ft"\a Veighta Stated\&"):

lat L.y.I:
cha t itle201:,

190

(h d n nuwqr201:
I = (jat)(flk9)I/videro);

Fret R(x-5y-Sx+y+ 1%)..
coloc(4):
linewiclth( I);
weti~x-5.y-$.x+l.y+ 1.5);
rnov2i(x.y-2J:

chmmrstf itle);

mut L)Y.I:
t titIP1.201;

float ft..
inS &-eolar:

I char nsvn~Iwrt2OI:.
I = (intM)(Biost)I / ik)

eomi-ow)~oi:
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eolor(4):

cfl)O 2i(X-2.y):

charstr(number):

ifteX.Y:write jut
c~aai litle'{2o].
ime t fl

{charn Isunmb.r[2o1:
spriskA~ alumr.ne.ft);
emov2i(x.y):

11:58 or '102211t
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DISPLAY..NET(display.c)

* DATE.I9 Ao4ugh 1988
* VERSION.

* N.4AME. DISPLAYNET
MODUTLE NUMBER: 1.9
DESCRIPTION.- Duplop Ike Network usixy Graphics calia
A 4LGORITHM. Nomse1

* PASSED V4RL4DLES:- Nomse
p RETrRNS: Nomse

* GLOBAL VARIA4BLES UTSED: Net
* GLOBAL VA4RIABLES CHANGED: Noet
* FILES READ: Noe

* FILES WIRITTEN: Noe
M AODUrLES CA4LLED: Nonse

* CA4LLING .4WDULES:- Nonse

* .4 THOR: Grrjorg L. Tar2
* HISTORY:

#uchsde "met .k"

#imchiai.fhlto .

eztwr in mtn.right.goodtemt.do.gw: 30

eztwfl striact neutatna't net:

iat aetiv = FALSE;

DISPLAYNET() DISPLAY-NET

wuie~tng2.700.130."Deired Output");

* writi..$ring(30.730.350."Feedozvrad Backpropepation Network" j:

*i (! Activ1

plolstivxk- mpn4tim.nikntyI.sikatw~npthd.u)

pilotnod (I .n.ecyl i wt.yL-naak.net.y2-ntmk.net.w i.hifr..otw.hicketwo);
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DMSPLAY-NET-plotnod1(display.c)

plotwo (2.net.y2

plotilode Outipntipns~e~~akn..w~Ip~,,iw)

ipIotwxle (1 ,nt.yLI.e~l.akat.2.~s~.La hd~n.~ec.w)

pletnode (2.nescy2 at4.y.siik.net.outp~mm.aeaw2.hideto.oiotpii),

plotnoMd(3.flet.O4.tp,vustt):

plotnoded(3.0.oet~doft.ouipvvsJ:

ilWcia == FALSE.)(

plotnodedi 3.1I0O.uet.doft.output ).

pio~nodetif3.20Onet~cdofl.ousp..t):)

&Met threvbo~d= 0.0;

pkotrodeiRx.nod,owet) plotuodli

ink X:

Goat nod"fl:

in i4 a.k~y.x2.y2:

y=Weitgx+30:

higJi~ott il' Psi-igt+ x Y. wigh./4 *3):
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plotnodei-plotnodex(displayxc)

ifdo-sin ==FALSE)(
color.of(0.5.O..5.nodei]).

hiolo or' 'e9,O.1.ixd 0yceiliJ):13)

big~i .'t (iweight.s+x+200.y.weiglat../4*3):

*110

plotnoded(x.y2.nodpejower) 1)lotuodcld

int %.y2;

Bloat nodel

imt lower;
13U

{ mt ij.k.x2.y:,

yspcingx+30:

x=( l24-weiglit,*owpr)/2:.

toopi(lower){

loopif lower)4
140

colot..otOM9,9. I ,(Iloet)nodefiJ);

bigplot( iwight.m+x+y2.
y+weitap2wightus/4*3):

plotnodepx(x.y2.node.luwer) Iplo leX

ink x,y2;
ISO

jut nodeai:

jut lower:

4 jt ij~k,x2.y;

y~xpiitg~x+30:

x=( I24-weight..s*lower)/2:
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plotnodex-plotnode(display.c)

Ioooj(Ioweir)!s

Iaopi~lower)

opt-cok*~ 1...O.fioet)nodeftJ);.

hig plot(iwEight.p+x+y2,
Y+wpight..s*2.weigit.s/4*3);

I)7

#if FALSE
1)Icoiode( x.imode.array.ower.muppver) )lutuodle
iut X..
Boat node.jfwayj~ui2e):
in& lower~upcwr:

I im ii.k.y~xIx2.y2:.
Boat nmax,nintl.t#Nmp.t.'I1Ip2:.
y=xprisgi+30: ag
xi=( i02.-w..ighL..jrlower)/2:
x2=1 1024-weiglst-sppef)/2;

Iiiwwidth(2):

Iiuadlmx( affy,&~mx.&mpin.upper.lowev);
Ioopi(lowerf)4

color-of(O.9.O. I .nodefiJ);

loopj(uppier) 4temp = ansy(iJjul;
m't..col Iua.minlAteip):
drawit(x I +weight..ui.Y+weishLjs*3/4,

x2+weigM_..sj,y+*pciug);

rolorbau( 102-1-256,y+ IO.max~niin); 20

#eudif

rlonodc( x~nod...niak.niank..up.arra.Iower.upper) 1)Iotuodl
iat X.
lunt node4J.ahamka.nmIuk.upo.arrayaohise:
int Iow"t.upprr:

in&a i.,y.xi.x2.y2:
float mxx.nsaa~tmpAtiip2:
cuargoffU:21
y---*pcigx+30O:
xI=( 1024-weighat..slow,-r)/2,
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plotn3od-displycount(display.c)

X2=( IO24 -weighatasIupper)/2;
Iinewidtla(2);

* Andmax(aMw.&mia.k-nmaiiipper~iow,.):

oopi~ liw er) 4 
2

if~iankjp~jj 1.0)(

drawit(x t+wPigits*iy+weigIlt..s*3/4.

2w0

cn~orbar% 102 4-25d.y+i0 .mommin):
* ecuonJ: I

findunx(arry~nial.n~in.outa,ina) fintdzWL'
&Mot anayO[uixej.*inux.*iun

*iuat ouls~ins.,
Snt ij,k; 

4We S11fti 0.Ilaxj=0:
iut flififiO.ntinj=0:.
naiii = arrayloI(0J:
mnax = away(0J(0I;

* loopi(ins)4
Iopj(Outs)t if (aneYjjjfi< *min) *nvin=rayjiJ;

dimpllty- unt() dlisplay olut
We* whw"P
linewidth( 1):

40 coloef 7):

rwti(80.wr.923,where.I20,.
coloy A)-.
write-iut(NO6.~wwh,+2og.u nt):)20
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ckeckiuouse(graphic-c)

VERSION:

* N.4AME. Graphic Parkage,
MIODU'LE NUMBER: 1.19
DESCRIPTION: Graphac fotat fer the Silecee Graphic IRIS 41-0
A .LGORITHMI: Nonse to
P.ASSED VAIA BLES. None
RETURNS: Nome

* GLOBAL VARLABLES USED: Nowe
G (LOBAL 1AI:41BLES CH.4NGED: Nome

* FILES REA4D: Near
* FILES WRITTEN: Nowe
* HA4RDWA4RE INPUT;- Noe

HA4RDWAIRE OfTPU'T: Near
* MODULES CALLED: Noise
* CA.LLING IOD(*LES:- Nowe

.1(THOR: Grre gor 1. Tarr
* HSTORY:

#iucluds~ieg .h

*Isiebt d tfaltiam.hp 30
frn doe hliawoya:

exteru ink couuldiplay.do-sin;
hmat r.mt = 0:
check..rne() (h~~~~

4 smot vws:

Boot fesasppsletnp.yt~iap:

sfreooed xa.ya: 403
iat whklui,wlirhy:.
daat rnuftae201:

it Iquv*St)!=0)f

xs=gctvaluatot RMOISEX);
ympgtvaiuatoefMOL'SEY):

xis = (btK(flaat)u / video):
ys = IinS)(hofeWS / vo) s

14-00E. Noc r1 mJUPo Page I of raphiee



dckju-ouseblowup(graphc)

caeMIDDLEMOUSE: ifjv&i~m1)f

blowip(xs);j 4

came LEFTMOVSE: ita=f

fiudnode~zs.y-):

break:)

cams RIGHTMOUSE: if(vsa=I1){

if (ye > 69-
mUwc!&Mwhichx){

came 4:faul Onvbrak.
came 3:exi&4O):bweak;.
came 2:rnwnt( );bweak:.
came I :nakejywpb( ):remk;
came Q:WhiwevaII) qreaa4&,vm);

whisvall) qread(&l);
break;

break-.

DISPLAY.NETO;

Sc to coovd ms-

j sciecilot xe .yc;.
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t 01

blowup-makejraph(graphic.c)

yCgptvaIUtor( AlOVSEY):

viewpo4t(xc- 10Oxc+ i0.yc- 10O.YC+ L00):

fiaaewidth(2):olor(i12);

Coloij0):eleaaj):

otho2(((ood)xa-20..(Coor)x+20.,Coott)y-20.Cooft)y+2O.);
120

restor.e.cren() restorc..screcu

viiewport(0.(izt4 (013. video). 0 .(int)(77.0 video)):
ortho2(0.3023..0..77.);

moIoroqhiio.vaitw) color-of

&Mst Isi.Io.value:

4 olo.IINDCTERNI);

iI~vaie > hi) eolorRARDPN);

iltvahte < 1o) color(HARD-OFF).

/* 6O. 900.4 70.6!0 
14

nvmkperap~h(x.y) uke-gaJ~
lct xhiy:x

it (coutit < display) return;

rtcwpot((nut)x 0 ~io.~t( + -0M.) *video). I Wl

(lit)y 0 video).(hat)((y+I50.0) I video)):

Mf~rqcunt < 10000)
ortho2(0.(loa&)eouat, -0.5.1hiutorI0);

se
ortho2((GBoat)CotInt - 0000..(loetfrouU4. -0.S.historyfoj);
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mabe-raph-colorbar(grapic.c)

co" 1000O);
dewIN); il

idex = count/dimplay;

Ioopi(indcxf /*horizonal '

draw2((IoatidiMIay).iutwy(0i):.)

ii(dqoin != TRU'E)

I index = (iaalhimtoy(0J: 1-
Ioopi( (ijmdidx )I /* wrfork *

dnw2((SoaS count.(o9)i:)-

color(ELMUM):

index = cosing/tialwlay:
aiuoie2(0,Iais~ory(OJ)-:

draw2( loamtHidistplay).hityi]); 'so

wrie.AoatOn)x.(iOy+130,.80.blryO. 1000):
writejlorA((ht)x.(haS)y+30.50W.bi~oyiudexJ41000);

coloqbarfx.y.namxjnu) culorbar
flat X.Y:

Alot rnal.min:

chow imxsnnvgf2olri~eutngf2OI; 'Go

for (8iTBFi+i.)

big44at(x+i/2(Sl2/TABLE)-20.y. I OtSI 2/TA OLE)):)

qmntRnaxagrng."8. St.inx); 210
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colorbar-bigplot(graphic.c)

colaeYELLOW):.

ernow2i(x+20,y);

ehantir~minstring):.

cmov2i(x+l60.y); Mo

opt co~orlax.miavalue) ws olor

2=1

I vaue > Alas) value = max:

if~value < mill) value = mill;

1w cen (vsime-nio)/(nmx-uain) *(BSait)(TABLE-S);

COIX (iatlpeecent + 8:-
?40

#W FALSE

bi~p~otx.y.dot) lbig.)ot

ligt x.y.t: bgpo

tI0 e i 98Pt frpi~



bIg..pIOt-4tIxtPtI(9raPbcc)

(Irawit

d(irawiti

jt utewtaKr~t,1Cfld.Yvvmd-

iraw2((SOUS )lenJ(&3B)yed)

drmwit2(=twt.$yeat "Qdym" 
drawit2j

Boat tt.ystsxt.xeld.yeld:

draw2(xead.,Yru():

clc~rjerccu(I 
earj'leu

colotlO);

curmOst))

IxpI)/* UstA for POcmuSt 
tl

pa~ec~ot~ 0310
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tsxtptl-iitscreen(graphic-c)

iaait..d~v()ilit..(av

r&e(): i(

scolligo: 3

ismit..creen()itscreeli

Weaa ij.k.ted.preft.blue;

grogifigo;

nmepNo"oi1000. I00.I00.IO0):
nslapCoo IOOI.1O.W).50);

clearscreeno:

340

dcO MIefrC.4duaI);

Milv" LFrC 101 fS):

qdk-%ieM I)LHTMOUSE);

for(i=TAflLE.k=0j=Rg-TABLEj++ ){
if Lj<(TABLE/2))

4grvein=(ht)((25d4./TA4RLE.) *(Smt))2;

blue = 2.5-green: -
rnapcolorfj,04wen/3.hluo);)

mld f at )(12S04./TABLE-) *(fioat)tj-TADLE/2))'I;
green=(2.56-bItw);
niapeoiotlfj.red.green/3.0):)

) o.,qeweno'.
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{ 371

wrieatrwg230,700.4O."EALT? ;
writeatring2l -1O.7 OO.-SO."WUAP*);
wrijtrin2(23.-a0A0"UU).
writejtria2(33O.7W)AG.4."Q",t'1.
wriet ng243.700.40."7ast")')

char titHc201j:

r har nttnAbpv(20j.

I = (atX~fuatjIvi398
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CHECK..ERRORS(testxc)

* DATE. .1 Octo~kr 1988
0 VERSION: ! 0

* MODULE .Y1AM8ER:t.ii
* DESCRIPTION-Prvded for sysete f and ir vidaamo dening fraineal
0 ALGORITHM: None 1
* PAISSED V *IRI4BLES: None
0 RETURNS: None

01 GLOBAL VARIABLES U1SED: None
0 (LOBAL V IRIABLES CHANGED: None

FILES REA'D: Noe
0 FILES WRITTEN: None
* HA4RDWA4RE INPUT.: Nane

HA4RDWIARE OUTPUT:- None
* MODULES CALLED: None
* CALLING VODVL ES:- None 2

0 *4 TfIOR: Gregory L. Tarr
0 HISTORY:-

extn ink eounI.egh.good.teaL-emt.exniuiiamnuple,ctypP:
extefla in& diiayv:
fmtftm sruck neuruilnvt newt:
int d.TWOna:
&.Mw Areuracy: 30

#murhviv "deftuit~ozs.bh"
#includc agt. h
#mnde <inailih>
ink nuiinakee = 0:

externa ink oulput.inipit.bidc..oue.hidejero.
(IIECK..ERRORS(Y."f) CHECK.ER RORS

&met yn;

in&t ronaprtjight=-O:
inkt cert-oo=-O;

Ioopi(oulpiaL) I effurfi] Baldfjj y~ij;
if (errri] < 0) errorfil = -fof)

if (erroefi] < 0.5) (caormtgood++;,
4keusoam++:)

if (eorroefij < 0.2) ert..nglit++: L

if (irfrt.-oo == (o411pW!))4 good++:
++mnet.cdanm..n(ctypel:
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CHECK..ERRORS-calculate-error(tet.c)

if (mistakes) printfl"Sauple %2d Type UA\z".aanple~ctype);

if (correct-ight = (output)) right++;

Bloat erroldeff-O.O.deim--rO.O

CflECK(y.doft) 
CHECK

Gmt cloftoj

in&t ij;
Ioopi(output)4

rnwdby =(&latjdoft(ij- yU'i:
err += mined-by 0 rnimwtI..v;

/0 prialff-dafl %Lif I %.lif

rniwdy =0.;

lint i:.
Ioopi(output) {uet.clawin.teat[ifro:

uct~lameumt~] =0:)
right = O.good =0.decisaous 0.

00.7 M-0 DO-.TEST
W izt:
clear -test();
Ionpi(exarnjtst )

SMAKE..T MS(nrfl.inp.iiet.doft~i);
FIEDJORWAM)v:
t.IIE(. K-RflORS(net.outp~nnetloft):.

printf("Tess: 3. 21 3. 2:fn(otrgt(lO~)xftCtO.
Iflot)good/t(oeI)exan.test IUO. )-

ckw eat.O 940

cakulte..cwr()alctilateerror

err = (float0sqrt((double)err):
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calculateeqrror-CHECK2(test-c)

don-flfT (9?? - Olderr);

oldert err:

iftoxaniplars == 0) err = 100.- Seeuracy:
iwdpx=count/diplAv: 

Ito

hiaoryindexj = err:

CII WK21 y.doft) CHECK2
float yfl:

GINt rnimed.hy=-O:

Ioopi(output)
mismed~by =(Siomi)doLiJ- yfi];
err += auiused.by *iuiuine~by;

nimd-y =0.;
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main(counter.c)

* m

* D.ITE: 17 As, 1988
* VERSION: 1.0 .
* N.4ME: Coaster Propagation Nearal Net-Alain Loop
* MODULE NUMBER: 2.0
* DESCRIPTION: Couaderprop rain loop

ALGORITHM: None
* PASSED 4RIABLES: None 10
* RETURNS: None

* GLOBAL V4RL4BLES USED: None
* GLOBAL VARIABLES CHANGED: None
* FILES READ: None

FILES WRITTEN: Nose
* MODULES CALLED: None
* CALLING MODULES: Nose

* AUTHOR: Grrgory L. Tarr
* HISTORY: 20

*o

#inaclude "ant.h"

#iuaclude "defluLti on.h "

#d4flhw wait(A) itt(count94A))==0)

strnct nera| net net; 30

hat input.output.hide.,lie=30:

extern sample:

int display = 500;

extern iut nwenuo;

iut count=0.right.good.gess.test: 40

mit( ) mnaiu

INITIALIZE):

normalize~Iain():

while (COU1nt < 100000)

/wth coAnter propmgatiou */

i AKE.INPUT(niet.inp.n*t.yoout.- I);
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niain(counterxc)

FEDUORWARD(TktAIN);
'rRAINN~ro;

rf move counter propot.aio to test '

hlA NFJNPUTT(net.ioip~net.yot-1);
FFFD)FORWVA R I)(CII ECKI'I); l
CH E KER ROS(netcypmuet.yout);
waitfdimplay)f SlIOWO,

DOJrESTO:
Iiil..

wait(display) DISPLAYN~ro:

coflUA++:
display-cooing(): 7
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//

/

(de~intions.h)

/ aOeOOaeaaaOaaSOaaaaaa..aaa, OeOSOeaOaaaaa..aaaaaaaeaaaaa0a**O*a******

*

* DATE: II .A *g 1988
* VERSION:2. I
*

* iNAME: Defineilons.h

* MODULE NUMBER:
DESCRIPTION:
ALGORITHM: None
PASSED I4RI.4BLES None

* RETURNS: None
GLOBAL "ARIABLES USED: None

* GLOBAL VARIABLES CHANGED: None
* FILES READ: None

FILES IIRITTEN: Name
o H.RDIWIRE INPUT: None
a HARDII'ARE OUTPUT: None

MODULES CALLED: None
a C.4LLING MODULES: None

* .4 VTHOR: Gregory L. Tart
* HISTVRY:

*aa~aeeaaaaaatt aaaaaaaaaaaaaaaa O Oeaa*aaaaaaaaOaaaaOaaaa.**.a/

#d4ae GRAPHICS TRUE
#dk4ae video 0.150
#d"fne loopi(ON) ftuio-:i<ON:i++)
#dene Ioopj(ON) for(j=Oj<ONj++)
#defam Ioopk(ON) foT(k=0:k<ON;k++) 30

#d.ke Ioopij(ONETWO) foji--0:i<ONE:i++)for(jf0j<TWOj++)

#d lfine TABLE .512
# tk4ne HAI)ON RED
#define. INDFTERM GREEN
*deim UARD.OFF BLUE

#def ne TlITE 1
#daftue FALSE 0 40

#d"ae TRAIN 0
#define CIIECWIT I

#dukA line prit("\a")
#dp,431 dispiy 100
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dea.i size 200

itruvct neurtid net

&m4t Yout4uiuel;/ NODE Y' oetpmw fosoul
flme yp( z. / NODE 1"-/
fltoes ziej[Siae): / * IIEIGHTS'/
floss xyp(izel~ize.

flos umze: / NODE Z*1
fles con(mizeJ:

floC XPfiZ..J: I' NODE X 7
flot xziumael(Sizej:

fleszpfsiz,,][sizeJ:.
&mte inr~aauej: / NODE Y-/

2w3

94942 Nor 1 98Pae1. 
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ENMTAUIZE(Initiaize-c)

d.

* DATE: J Asiquat 1ggg
* VERSION:

* NA4ME: Irntisth.-sion AMolk
* MODUrLE NUMBER: !.J
* DESCRIPTION: fiih:.tiow of Mhe display hardware. 10o

* enu impeS test date. end x(f data structure.

A 4L GOR ITHM: Yna
* PASSED IARIABLES: None

RETURNS: Name
* GLOBA4L V41R1.BLES USED: Net

GLOBAL VARIABOLES CHANGED: None
FILES READ: None

* FILES WRITTEN: None
* HA4RDWARE iNPVT None 20

H ARDWARE OUTPUT: Noise
M AODU'LES CA LLED: None
C ALLING MODULES: None

* 4 THOR: Grejory L. Tart
0 3ISTORY:

#iaaciide Odot lultioA."
30

IWdadice .h"

dliiadute <stdio.h>
tHaviude <signaibh>
#iaacluds <vAth.h>

40

exteru sinU wtritqwt nemo. nt;
extena Weits put.ouPtput .hid..okle:

#defin TABLE 5~12

Oxt~na iit livnI1);

inmALI7,E11 INITIALIZE

/* signal olers Me~ mean go be railed bg is control c
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LNITIALIZE-init~net(initialize.c)

migpa(SIGflNT,nwnu);

f &iik.etEU

ginitao

finewidathO:

whtinopen( "not"): ")

nelcul):.0.0, ) so

if r(YlLOW):l+.jwcirf~.2-/,)

* ranoviif40.dOO)

ehutr "Cutr rpgain)

6haijst "U.hid4qntwr);

fop(uu~irohi=TBL/.j8<ABEi

tiit(iv.qe iiut...ne 0.0
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inik.net-big.plot2(*uitale.,d)
ionl ise-we g~i.net.zxp.iaide.ome~npu);

prnonveight. Uorma.Usd\R").

notlz-egiwigt~iprlwr uoruudize~wcigits
Boat weightsmf: 

h
ins urppr.Iower;

I hat ij=-O:
&lat 33mag:
k-oj(upper){

jinag = 0.0: -
Ioopi(Iomy) ning += we ghK+i*injs weigh ~I+jssizej

niag = sqrt(nhag):K
Ioopi( Iow"t) weightwfi+j*,ze]= weightei+j*,jiW/rag;

&4 nst n 
13:

&lat :

1=14 Soay/1000.O-O.5):,
return X:

Anduiodi.%~fiUduoditeZ
II 140

big..po42()bi9..pIot2

4)rofitole



FEED.FORWARD(feedforward.c)

" DA TE:
V $ERSION.

* N.4 AE: Ferdforward
* MODULE NUMBER:
* DESCRIPTION:
* ALGORITIIM: Nose
* P.!SSED V4R!iBLES: Nose
* RETURNS: None to
S 05GLOBAL V:4RI.4BLES USED: None

* GLOBAL I.4RI.4BLES CHANGED: None
* FILES READ: Nose
S FILES WRITTEN: None "e
S H.IRDII4RE INP(T: None -

S, BARDII4RE OUTPUT: Nose
0 MODULES CALLED: Yon
* CALLING MODULES: None

is .1UT!OR: Grvgory t. Tarr •
* HISTORY:

$laadulde "4.ilt bloss L .1,h "iuchde ". ".
#include *set. Y0
#i clude <uamh.h>
ext~vwn strnct D",.m'l-n € net: J
eMtw int input,output,lideone,cot: •

3U
int 111&xzinlx:

FEED.FORWARDEtat) FEEDJORWAID
hi tat:{
i t ij:

. alost nuz.templ.temp2.bi: .

/* roleshvi :'a *
40I

/" Nair that the feed forward ulgorith "
wori-s a ittle difernstly when actually Italia#

Ike stem ua opposed to teaching.

For teehing the you# Polae re counter pro pmgtd
through tke sestem. For testing ost plist are assumed

to he :cro.

The test condition -sttement im the doobe loop them
•trouis for this diffcrence. SO

is-,

Ioopi(llidkc.onv) (lempl = O.O:tentp2=O:

2:0. Nov 10 1988 Page I offiedjsrwver.e
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FEED-FORWARD(feedforward.c)

Ioopj(iuput) tenipi += net.inpW * net.ZlIUJ;
ifitt != TRUE )f
Ioopj(output) tern2 += taet.youtU] net.yzUlji;1
uet.srij tenipi + tenip2:

/~Now find was of :

niax = O-.inaxjnqIex = 0;
kwoji(lside..oae? I Ii = urt.s..confj/(fIcmtfroun9 - I.0/(iut)hideoue:

if (tat == TRU'E) Ij = 0.0;
if (hi < 0.02) 4
if (net-Si] > mux)(
max index=i:.
nmx = uet.z[iJ: 1

itut TRUE) mmt.z.cOaGmax..idexJ += 1.0; r

b Ip vamp on it > syumbol drfsaft is to the lowa gint:

as neomrmdd by lieebkj~aveeu

looipi(hide..oae) 4if (i==#uaxindex)
net.SPi]= 1.0;

else so

Ioopi(output) I ret.Yprfi-O.O;
Ioopj(Iaide.oe)

I net-ypOi +s= n-t-SypOjIDI *n..t-zSj)

loopifinpit) fn..t.xpfW= 0;

I uet-xp(iJ += nel-uxpiIljI * et-44l:I
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TR.AIN..NET(trainnet.c)

* VERSION:
N.4AME: tivin oftt
H ODVLE NUMBER: t4

* DESCRIPTION:
A .LGORITHM

* PASSED VARIA4BLES.
RETUFRNS: Nae t
G (LOBAL VAIRIABLES USED: Wriught VfcI ers

* GLOBAL VARIABLES CHiANGED. Weight dEclrs
* FILES READ: None
* FILES 1WITEN:- Sent
* HARDWARE INplrf: Noet

HA4RDWARE OUTPUT: Noe
MODULES CALLED: Nae
CALLING MODWUL ES: Messs Loop

C 41(rFTHO: Gre oger 1. Tarr 2
C HISTORY.

*dedbm THUMA FALSE

#imrhtd. dtaiiuo
#uadudev net. h
exten struct m1euraljtet not:
extern W&t input.otput.bide
#deftw alpha 0.01
$44aefw be"a 0.01
extern iat anexJudex;

TRAIN-NET() TRAIN-NET
lint i.k.ka

/I adjust Dt weaghia betw'een the I prirnt and the lagrr* 40l

loopi(Oustput)
net.sip(mnaajnle.x)(i] +=

(-alpha *nrl.zyp[nax.iadexi1) + beta * nety)OUtrj);

/ * sidjs Ike vrijik~aewtea the r prime and the -lagtr

t~.2p(A~f4Pj[J+=
(-alpha $ net.xxp~ntaxj.udex)[i) + beta *netioplil,:

/ * jIea srvoq&s hvIet-e an*d r input C

iaet.x'lmnaxjindx]i += alpha (iietinpjJ - ,t.xazrnaxjndexi])
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TRAIN..NET(trailDet.c)

P' adjust weights between sad gpnme /

IonpiIhide.One)
net.) (mamindexj(i] += beta * utyu~J-net-yz1IIax-fl4IXJfD:

60
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showinput(showxc)

* DATE: .1 October 1988
* VERSION: 2. 0

* NA4ME: Sho,.c
* MoDtLE NUMBER: 2.5
* DESCRIPTION:

.4LGORITHM: Nonset
PASSED VARIA4BLES: None
RET-'RNS: None

* GLOBAL VARIABlLES USED: Nonse
* GLOBAL VARIABLES CHANGED: Noise
* FILES READ: None
* FILES WIRITTEN: None

H.4RDRARE INPUT: None
* HA4RDWARE OUTPUrT: None
* MODULES C.4LLE): Nomse
* CALLING MODULES: None

A 4UTHOR: Gregory L. Tarr
* HISTORY:

#hiclude <stdih).L,>
#include "det1iitioaa .bm
extWm iat diluy:
fmten strtact neural net net- i
tnxww uat inputoutputIkdeoteright~goodl;

float DO-.CUECKO:

fixtezf iuht countjigbtgues.good.tent;
SHIOW() SHOW

showoutput(net.yout,net.yp);

sAovw'eagi(met. y:. 1. outputhhde-out): 40

*leovsodf (mef. :.hidc.omt);
show'i'gh~~ne~r: Ikidr..ofe.im.pel):

sbo-vnpalwaef. asp):
.xhomode(ne*. 9 !.hide.,ieo):
node isfo($00. 600):

showsiiput(1) sI1owiu1)ttf fgloat Xi]:
4 n uaj.i: 4

priutr("Counter Propagation, Nodel\a"):
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showinput-showweights(show.c)

showoutput~yout.yP) slOWOUtpllt

{ttij:. 40
Bloat error:

* loopsoutpet) prntffC 2. 2! -. uomti)hlase;

poaffl-Y-prorat 1
Iopioeutput) prnatf(N?. !f - puj:lieue;e

printf(CCouzt:T6d \zGuee9:%i.2f Good: %1.2f Towt %1.2f\n",count. 7oo
(float )right/dinplay* 100.0.
(float )good /display* 100.0.

head.'ro:0.)
P j prntff'aiderr. TOuat:%6d Gmes.:X.1. 2f Good: MI. if Test: %J.:!Pf\a". count.

(fleet)nfkt/ display *10. 0.
(loui)tood/ dimpil *0. 0,
0.0):

is~so~od~~n~ttI~)showuode

floa yo.:

print( ('" Ite:ie
loopi(n) prntfQ"%2.4f O.y[ij);line: Q0

ulmowwreiglnls4 w~laypt~upper'lower) showwpights

&Mot wO(M.izelI:
!at layermIpper.10wer:

i mt j.i:
line:
Ioopi( upper) print( "VI(Ud,Xd) ",Imyer.i ):line: in

Iuopi(1mrper) {if (wo)jJiJ < 0.0)
jvrinlr("7d.3t ",wtjJ[]);
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showweights(show-c)4 line-)
110
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(inenuxc)

*D.4ITE- .3 October 19358
* VERSION: 2± 0

* N.431E~meav.c
* MODUrLE NI'AIBER:2.6
* DESCRIPTION: Provides interactive menn options.
* .4LGORITHM: None

P.4SSED 1V4RIABLES:- None
* RETURNS: None

GLOBAL VARI.4 ALES U SED: None
GLOBAL VARJABLES CHA-NGED: Yane

* FILES RE.4D: None
* FILES WRITTEN: None
* HA4RDUV4RE INPUT: None
* H.ARDW IRE OjrTpjrT. None
* MODULES .4LLED: Noise
* CA1LLING MODULES: None ?0

* A U'T1OR: Grepor; L. Tarr
* HISTORY:'

exten int ia..daas:
extera it activ-,
eitefh Hloat thresholti;

*iuid(I <signal.Ii> 30

#include "definition .1s"
#include "net."
#include <gibh>

exteru int counit.rigliI.good.gurai,tat.display;

mnt 11nn0(
char midlet.filenane[20j:

prinir ( 1) Save Veigjits")liue:
print ( 2) Display Weights"),Iine;
priotf( 3) lead Visights "W:ine;
printft( 4) Change Act Display")Iiip:
prinltf (") Show Activation Lsvels")iine:
priit 6) Show Voight Lsvols"):Iine:
print (T ) Change Display Threshold ).Iiite;

printt I SILICrION:
=wte getcltnro;

sexitfl:
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read weightfi( renw.c)

break:

case '1': write weights )-
;break-

case '2'1: prntfq"\lVsi~hts Displayed \n").
tbauseo; 6

case 13': priuI("\Afte Filename: )

resd&wviits (fiienanw);
pruf"U vaeights utalled\n" .ieniatin);

break:
case $'4': prifftf ("\nBUte? Class:"):

break;

case '5',: aetjv = TRUE:~
nodriunfo(800, 60 0 );
break:

case 'w: acdav = FALSE.

break;
case '7'1: printf ("\nlute? low Threshold:1

break;

rea~eigt.6(filusale)reatweigllts
choir Rhe.narne[J;
4FILE tp;)

Bunt X;
#if FALSE

hat ij~kk:
hut foutptit.flpitflidoflCnflhide two;

fp= ropen (filensnhe,"?").
(f(tp=NILL)

iptintf('\ 000Fil* £rror*'**\":xt :

twcant (fp,'d Ud U~ UW&(foutput&-lhide-tw.&fideOflC,L-ia2put);

4 ~(flhide..on>Wde'.ot1)j

(tlnput>input))

{Print.I'"\ -*File To* Large*** \n"):Pxit1I ,.1

n..t.w2(ilul=x:}
IoOPij( flide)t~O.flai~e.OflC)

ne.wfiu)=x:)
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readweights-header(iuenuxc)

l oopi(fbideyone) (fbcanffp."*".net.tO+i)1 110
fclogr~p):

*cudif

SVILF *rp;
hat ij.k:

dahm fikenanwI2Oj:
#if FALSE

* ~~~priutR"I"nte isus:
W&OR("X. flenanw);
rp =rfvpe (filenglne."W"):

rpriliir (tp.14 U %d %1d \n",oulputlid.oe.Cin)Pet);

* loop j(haidej.wo~hide _pne)

loopij~hide..one.itipit)
rpflntrp."%U\~pwflJi) 130

* loopi(hidejo) (rprint(p~~2 \sNaiit.t0(i1):)

fcloae(fp):prijAtqm\s V.15k:.s Stored~n");
#eudif

0 140

* I:.~dv~j)header
fing off=7480'offy=600:

color( 1000);
liiwwidth( YELLOW):
r~ifN(ofrx.offy.180+offA(iat )(70./vidveo)+offy):.
Coloi); ISO

* recti(ofx.offy. IAtO+offx.(iut)( 70./vidv-o)+offy);
color( YELLOW):
wnrpInt(Olfx+ I Ooffy+ 10. "Count: O'coumnt):
wrvitvjnoai(offx+ 10.oIIfv+50), "ltght: "Aflont)gootiI/isllay 100):
write flOet(Offx+ 1O.Oly+ 70, "Guesa: ",(float lrigbt/display* 100);
wtitpeflor(offx+10.offy+30."Test :Jt)
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header -writejnt(mennuxc)

nodeino(oirx.offy) UO(teiufo
ink ofl2.offy: 140

color():

rstAi(O+Offx.DOoff.i5.Ir0fri.8O+OffY):
colur( 1):
rctif 0+M.3xO~offy. 1 r50+offx-.80+ofry):
colWt4).

crnov2i( IO+otfx.5+offY):
ciarmtr( "Cazrout Display"):
eutow'2i(10O-*ffx.40+okf):. 1170
charmi( *Shows"):
enuor2i( iO+offx.25+ofry):

if (actili)
chantr("Activation"):,

chamtr("Viht Levels"):

WTitP~jiOat( X.y.tWCi.ft) wnite~float
fit X4Y Ion

cha fittc(201;

{ clam numbiw"(201;

.9iintr(N,,nlhef.'1. 2f".ft);
cinuov2i(x.y):

ltaratr( title):
charstinjnumuhfr);

IAO

writ~i..nt(x.Ytidcl.ft) writejut

char titkc[201:
iat ft:.

clan nwnbe'i'20J:

rharstr~ nusuber): 2NN,
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DISPLAY.NET(display-c)

* DATE:19 .Avgusg 1988
* VERSION:

NA.4ME:- VSPL.4 YNET
e MODU'LE NUMBER: 2. 7

DESCRIPTION: Prvrtdts display routines of conaterproP

* PASSED VARIA4BLES: Noe
* RETURNS: Noe
C GLOBAL IRIIBLES USED: Noe

GLOBAL VARIA4BLES CHANGED: Noe
FILES REA4D: Noe
FILES WRITTEN: Neat
M ARDW4ARE INPUT: Noe

* HARDIIARE OUTPUT:- Moe
* MODULES CA4LLED: Noe

CA(LLING MODULES: NoeIn

C *4 HO(): Grrgery L. Tarr

#iaclud.e "ut.h"
#Anclude "dtlaltltas .h
#inehide *gi .k
exten W&t count.night~good.test;
ezt*rn atruct mW'ira-ite4t net;
extena iut input,outrdat,naie..n:

lant activ = FALSE;

I)ISPLAY-NET() DISPLAY..NET

plotnodef(O.nef z.hidefrone,"Z-IOD5"):
4n

pilatOod41(1net.xp.input."I-Prilae 1.4..):

plotnodcf(2.net.z.hide-one."Z-OD3S" ),

plotnode1(2.net.ziiide.on." "):

1pIotiwcdfb4 I.gmjet ulpit):"-rneldo)
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DISPLAY.NET-potnodef(dispIsy.c)

1plolnodel(3,act.yout,output."1-Uodes"):.

plonode (0.1 .net.axp,iuput.hid..ome):

plolode (1.2.neltnmhide.one.input):

plotnode (2.3.net.y,&oliputlbide.ofle)

plotnode (3.4.net.zyp.bde..one.output)-.

0#defla wpigit... 20
/ * df jle Spritg 18.5/

#deflae speing ISA

Goat dtn"dIod= 0.0:

0plotnoct(xaodr.Iowei) 1 )lotulO(ci

&lOat aMOdc;

yuicing x+20;,
x=(1024-weight.9kiuwer)/2-:

Ioopiloiwr)

met.colo.1I..0Ondei)F t'ligplot( iweigt..+x.y.weightp./4*3).

b: plot( iwiglit_.s+x+1l00.y.weight9/4*3):

colo(0.9.0. ILnodeij):
hig Ilot(iweightp+x+200..weigllt../4*3 ).

rlotnodil( x.ioe.owwer,tith') lt de

ix:

int lower;
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platuod~f-plotuodeh(display-c)

(mt ij~k.y-,z2j2:

z( 024-w#eiglit"siower)/2: l

loopi~low" 4

Ort-colo(I.5O.aoei)
bigpWo(i*wei 5Jatj+x,yweigbt/4*3).

color~i):
ctiwv2i(x+ IS.y):.
ciautr(tiid):

plotndef~~uodIomt~til&1lotUO(IeI
flat X:

Wea lower-
char titleG:

i int ij.kyx2.y2:13

y=Spwrngo(i);
x=( 124-wtjghits1OvWe)/2; j
loopiower)(

enov2i(x+ 150.y);

plnnodeh(x.uode~iower) 1)plUo (It'li
ing X;,

int lower;
ISO

I iut ij~k.yxz2.y2.
Y=Wping*(X)+ 15:
X=( 024-weigbst*ower)/2:

Ioolli(Iower)

hig~pot2( j*wqgihtq4.y.4.5S):
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plotnodeh-findnai(dispay.c)I

plotnoded(x.aadeJ""e) 1)IOtllOded

me x.nodo.4J.ower:

{ m* ii.kxz2,y.:

y=xping*(x)+20):
x=( 124-wpight.ulower)/2:
lwvi(Iow-r)

color.o((O.O.14.(fostnode(i]):

Y+weigihts2,weigh"l/4*3);,

plotnode(x.Gth'.TWay.upperlow") 1)Iotuode

aunat Anrayo(Rizel:
izat lppef.Iowef:

I in& ij.k.yxl.x2.y2.yoip; 
S

Sowi rna.miwi.tenip~tm.n2
y=Wping x+20;,
xi=j l1rl4-weigh"u~pppr)/2;
x2=(1024-wi~igJWstowet)/2;
limewidth(2);A

fibmdinax( array.&anaza.k nimuupperlower):.

Ioopi(tmprer)t o

loopi(Iow)4

xl+wpight~pi.othetspiug);

colofbail 1024-265y+80.rnaxjnin): .

fimadrnax( arrav.max.min .ouits~ins) fiuidniax

Blook &rmyD[xize.niax.*inin:
int outs.ifla:

{~~~ in = iay(O(O
=li arrayI(OM;

if (aizaytiIUI> *niax) *IIlaX=Rry35y(i]u):
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fiudmax-display.count(dispWaYc)

display-mnoen( (tis1)ayySolult

4 Lot offx45.*iideo.o'Ty=620.video-:

co 1000):
rwtIofx.offy-3..offx+AO..oify+ 16.);
coWurYELLOW);
writc,.imt((iat~offx.(iflt)ofy." ".count);)
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DO..TEST(testxc)

#iindn adotitim.h"
#include wst. .h"

externa ji output inpucIhid*..one:

eitwui fit rigji.good~exanpamp~e,test.exm..te";

extwul struict nIte mt net,

CfI F('K-ER RORS(y.doft) CHECK-ERRORIS
float yfl.doOg:
i mt ij-
float errwt(suel:
aaat (ort.nghstO:
ink corretgood--o:
Ioopi(output) t errorfiJ = dftfij - y[i);

if (erroii] < 0) efrorfil =-errorfij;

if (errmri] < 05) correct..right++;-
if (errorfil < 0.2) corretjgood++:

1-0

if (corret..ight ==(output)) right++:
if (correct-good = (output)) good++:

float DO..(-II £CK(

f it ij.tright.tgood;
tright = right~tgood = good:
righ4=0;good=O0::
IoopideXarnlars)(

NIAKFIN PI1T(re.inp.net.youit.i); 30

FEIED-ORWA II fl)'IIEL*KI'fJ:
C'[iECK.EHRORS(uet.ypo.net.yout):.

riglit=tright~good=9right:
test = (floatright/(float)Pxamp&ta 100.;
return test:)

DOTF-ST() DO-TEST

figlt=0-goodO::- 40

Ioopi(extan test)f
MiA Kt:N PI( twmt.inp..w-t.yot.i+examiplats);
FF.FDt)YRVARD(CHRECKrr);
('HECI(HRORSitwt.yp.net.y0ut):

printf("Te ight %.2f Go"d: %3.2t Wa.
(float~~~~~~ nogt(ot)eanta 0..

(Biot )goodI/(Biot)exaIIi.te&* 100.):
riglutO-.&ood=0:)
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iui(general.c)

DA4TE.
* VERSION:

* NA.IE Hykird Neural Net-Main Loop
* MODULE NU~MBER: .1.0
C DESCRIPTION: Hybrid act sr-in loop

A 4LGORITHM.: Noein
* PASSED VA4RIABLES.- Noe
£ RETURNS: Noe

GLOBAL V'ARIABLES USED: None
G (LOBAL V:4RI.4BLES CHANGED: None

* FILES READ: Noe
* FILES WIRITTEN: Noe
* HARDWARE INPUT: Noe

HA4RDWARE OUTPUT: None
* MODULES CALLED: Noe

CALLING MODUrLES:- Nonse 20

* 4 rTMOR: Gre gery 1. Tarr
* HISTORY:

#iadude "deftitoeA .h
#$uadude <stdio.h>
@tract ,aeural met net:
extena mt rnwnuo- 30

int cotin&=O.righ1.good.gueea~test~display =.500,9sowyesght8=.500:

extena i& exaultFmt:

extefla it ram.:

externa FILE ifst:
mmau() la

{hid~ero = 40
hidqeofle =20:
hidetwo =13: 40

nhoodf = (float)hide.anio

INITIALIZF.O:
DISrLAY-NE'ro;
while jeoumat < 100000)

clsoekjn"olsml:
IA KEJN PITT(nM .inpn.itdoft.- 1);

F1IEDFORAR D0:
('II F.'I(ER ROR.S( et .outp.inet.dluft); 5

BAt KY1ROP0,
/ * uwuu(100)4prrferbO:
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miain(general.c)

FIX UP(); /

wisitIow-..wighks)DISPLAY..NETO.

f~p~auits~O)Do-rESlo;
iiuake-rap(500.5430.);

i(at==i) DISPLAYNETO
eomilit++:
displaycount():

fdomi(rst):
save-weighw I..
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(definitious.h)

* DA4TE. 11 .~g198
* VERSION:2.1

* NAME: Deineilons.h
M IODULE NVUAlBER:.I.1

* DESCRIPTION:
;IALGOl.lTHM:1. Nose t

* PA4SSED VARIABLES: None
* RETURNS: None

G (LOBA4L VARIABLES USED: Nose
* GLOBAL VARIABLES CHANGED: None
* FILES READ: Name

FILES WRITTEN: None
* HI RDIIARE INPUT:. None
* HA4RDWARE OUTPUT Nose
* MODULES CALLED: Nose
* CALLING MODULES: None 20

A 4U THOR: Gregory L. Tarr
* HISTORY.

#define G-.RAPIfIC-S TRUE
#Je"iw TABLE 512
#d1*ine Ioopi(ON) forji=O-.i<ONi++)
#d.fne Ioopj(ON) torlj=0j<ONj++)
#d,4ue Ioopk(ON) for(k=O-.k<ON;k++) 30

#define Ioopij(ONF,Trwo) fort i0;kiON E;i++ )forjOj<TWOj++)

#frlci.a HARDON RED
#4ileu INDETERN G1REEN
#define HARD..OFF BLUE

#if FALSE
#deflne TRUE I
#diflhaue FALSE 0 40

#4144h6 Outpu,.t 4
*define in~put 22
#4Iefha, hide..one 20
#cleflrnc hiqdetwo 26
#endif

#dcfln. disply 1(K
#define %latarile ". .\dta\ruck. data"
#d4!ftue Spring 15054
#d,ftuo weiglitj 20)

#deine wqu&WcA) ((A)*(A))
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(definitions.h)

#d~eNE'A .0.3
#d'Bae eoad-oh I000
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(net.h)

#define size 100

struct neural-uet 
-

gloat outp(sizei:
float (loft.[Size]-.
float w2[sizeJ[size]:
float aw2 (size](size]:
float v2(sizej: 1
float osi p~mask~size];

float y2(sizpl:
float y2jimak (size]:
float y2-dtfsizeb

float w I(sizu]i(size];
float awl I size] [size]-.
float Lifsize];

float yl sz0]
float y 1-muwk (size];
float v

float woisizo-i~mizui,
float &wo(uize] (size];
float to(size1:

float w k(size] [size]:
Bloat aiv k(size] (size]; 

3

float tk[uizej:

float kI [size]-.
float Itk _mmaklsizel:
float kIdt.[xizej;
float k I -cou (size];
iut klislaiII~size];
float illptsizvJ
float illpjuiaic (size]: 4

jut r lss-o i (size];
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INITALIZE(initiaise.c)

* DA4TE: .3 .Asgu., J988
* VERSION:

NAM.4~IE: ImblihIhn" Aj0d alf
M IODU'LE NUMBER: I.2

* DESCRIPTION: Inatbali:af.on of the display hardu'r.
amp inpvt ff.9t daid. and ndl date strurfury. I

AILGORITHM: None
* P.4SS5ED VARIJABLES: None

R ETIRVS:- None
GLOBA4L 14RJABLES5 USED., NO
GLOBAL VAIALBLES CHANGED: None
FILES READ.- Nome

a FILE5 WRITTEN: None
H IARDWARE INPUT: NVone
HAILRDWIARE OUTPUT: None21
M AODULES CALLED): None
CA'.LLING MUD'rLES: None

a * UTI!OR: Gregory L. Tarr
HIJSTORY-

#iudnsde "defixitions .h"
#iucludo"gl .k"
#incluile"devic. .h" 30

#inclutle <1Inn..l>
#wuclutde <stdio.h>
#miuhde <siguaI.h>

#mnclttde must~

extewu striit neural iiet net;

Hiung raidornv); 441

#deflae TABLE 5h12

extern iut mcnu(I:

exterul Boat conscit-nre:

INITIAL IZE() INITIALIZE

RA
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INITIALIZE-init-net(initialize.c)

tnt i j:
* Ioopsj(size.size)

n,.t..w2(iIo radio
loopi(size) fuet.&2[ij = randonio1:

Joopifsimesize)
fIIt.W i[i]UlJ = raoidomll )

* lobopisaise)netl[i] = randorni(;

loopij(izesize) TO
lltw~jj= e81d0010:

loopi(size) uet.LO[iJ = raudotnio

o Ioopij(otizPefize)
iapt.wklilWl = 0.0:.
loopifeize) netkfiI = randorno:
loops (stze)net.kl~i.. (ij =0.0;

loopi(sisc) net.ki-lain[iI = -1, s

loopi(size) net.y2-klitaktil = TRI TE:
loopilsize) net.yi-maki = THIIE;
loopiFmiso) neck lniaskfiJ = TRUE:
lewipi(size) neot.iup~ntaakfil = 'TRUIE.
loopisuize) net.outp-mrnkli) = TRU'E;

floatt fandoin ( 0

4 lot Y;

y=(rasul() % 100) + (rand() % 100) + (ramd() % 100):
x=((float)y/300.0-.5');

return x;
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FEED-ORWARD(feedforward.c)

DA DTE: I I Sept 1984
1' IERSION:

NAE.IE Fictdforward
M IOIJULE NUAIBER:?.4

* DESC'qIPTION: Prorides 'orward pro pagaion of thf input aagn..
-I.LGORITJIAI: fredfortrarv t
-PASSED VA RIILES: None

* RETURNS: Non(
* GLOBAL VAIRIABLES UtSED: None
* GLOBAL VA4RIABLES CHANGED: None
* FILES READ: Noue
* FILES WRITTEN: None

H iARDWIARE INPUT: None
HARDWVARE OUTrPUT: Nonc

* MODULES CAL LED: None
CA4LLING AIODU'L ES: None

A .UTHOR: Gregory L. Tarr
* HISTORY:.

#inclssde "d.Uasiticpas.bm
#jnc~nde "not. ."
#mnclisde <imatith>
etem n t niginniiood.ctype:
ext-rn Boat militia-,3
eztcriu sti"Ict neuraijiet net;
ezteT iu t Count
Boat caieyO:;

ant krlansfsix--J:
Bloat niin (ist:
float cOnsicilene:

FEED-FORWARD() FEEDYOfl\VAIRD

4 mt ajwinner: 4

loopi(inpia) if jiiet.inpjniaxki 0.0) net.iDp~a)=0.0:.

/ * I'ohonfe,Lgr *

Ioopi( hi~l@.zerci)
{net.kl~ifr calck( net.inp.net.wk.net.tk.&i.iniput):)

fRnd-niin-tod.'jkwinuner); niininitini = winner.

/ * ReguIdr fotedforvard trith msuk for node wrocker *

J:O8 Nor .10 1988 Psge I of Ife dfarvard. c



FEED FORWVAID(feedforward.c)

1oopifiaide .op)
{nutcyl(ij= calcy(netck nuet wO~net-tO.&i.hide..zero):)

loopi(liide..oue) if (necyl-maakfij = 0.0) netcyl(i]=O.O;

Ioopi(output)

#if FAL13E

Ioolmj( hille.zew..im1put)
I if~uet.iupzaaaakff==L.0) nct.awkiD] =uet.wk~il~jJ neciupj:

Ioopij( hidt..on.hidIe.zero)
I if(uct.kl..naakUj==1.0) utaoiLI=otw~Ij e~lj;

( iftawcyljuaekUJj==I.G) itaii~J=ntw~Jj e~lj:
Ioopij(ottpu&.Izide~.twu)

( ifjupt.y2-anaakj±-=1.0) uetcaw2(ijo] =nrt.w2(iUj n et.y2UJ:1
#eudif

Itfloat cslcy(x.wI.Ita~indexjlower) so
Bloat va,wotsizethetafl;
*uat *ind~ex:
jut lower;

4 wt i.k.nuniber;
float Y;
y = 0.0:

loopi(lower)( y = y + xii w[nirnnber]fi]:)
y = y - theta~number];
rttnna flxy(y.I.0):}

float fixy(y.liardness)
nlone y.Iardnem:

retitru( L.0/( 1.0 + iloatfrxi( -(doulebe.)liarIniw.

float cmlrk( x.w .Ihet&.indexilower) to0o

int *index:
int lower:

4 nt i.k.numiber;
Bloat Y':
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FEED-FORWARD-findnode(fe~dforwrd.c)

,iutiuilwi = eitIlex;
Ioopi(Iower){ y = y + aqltare(x(i] -w~uiiiIer][ii);

fepni1frle -12f rwN %zL2f sir %)±f I X-1.21 \m,

return (float)9qrt((dvube)y)-1

float vagilcaice = 0.1:

fiud-mju..fod(w rier) fnlzui.ud
int *Wilamer:

float min.bia,.dastance:10
mat Ila-Ara..,
minD = 100000000.0:
mtinjuAod = 0:

loopi( hide-.zero ( bi = aupt.k I-ou~il/(floftt eOulIt - 1 .0/(flost )hidezxero

ifthiu> conwence) iftaxiha > 0.0) ronimise:

ifnet.kI(ij < vigilecw.) I nuin node =i: ra:
ifitetk1(i) > min) contiue: _- ra:

min = net.ki(i]; min..uode Q :
130

n..t.k1..con(,nin..nodej += 1.0;

a4't.kIacIi(min..Uodej = ctype;

*winner = niinuode;

kclau.(muiknodej=etypp:

nain-ist =min:140

Ioolie(Iiidc..2eO)(
netk1(i] = 1.0/(0.10 + net.klfil):)

nwt.kilmin..node] 2.0;

flilnjoH xs.ys) fiudllodc
bat XR.you;14
4iut aijayvpr.Ihw.node.tenup: -

Iayr =(ys/spcing);
Ow-juode = (iaat)(xs / weight-A);
temup = (1O24fweiiaI..):

switch(Ifiver)(

eae0: 1..noth- - = f ip-iiiput)/2.
if(nt.ap..niaxkthe-node1 = 0.0)
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findnode(feedforward.c)
net-iup-mask(dh~jodej = .0; On0

else
Iaet.Wp..nak(theoodej =0.0:

break;

case 1: the..node - (emp-hide zero)/2-

net. k lniaskfhenolrj 10
Ioopi(hideoue) net.I0(iJ += net -avOfiJ[tlae.nodej;

else 
170net~klnlalcthe-odeJ = 0.0:.

loopi(kide-one) net.tOi -= net-awO(iJ~thenodcl:
break:

camw 2: tive-node -= (temp.-hide-one)/2:
ifiwIut.yI..ma~kftbe~nodj == 0.0)

InetyI..nask(the -oil..J = 1.0;
Joopif hide two) ue.tlfij + = Ia4.w Ififl he I~ol .

else

net-yi-maskfthe-nod..] = 0.0;
Ioopi(hide Itwo) net I[ij -= net.awl(if(thoe node]:j

break.

case 3: the node -= (Ionip-bide-lwoO/:

if~net.y2 rnuwkfthe nod,..] == 0.0)

f ut.y2.nak(tIenoM.J = 1.0;

else

{netY2 tMask~iiae-node] 0.0;

break;
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BACKPROP(backprop.c)

* D.ATE: 28 ljag 1988.a
* VERSION:

N. ME: Barkpmp
* MODULE NUMBER:
* DESCRIPTION: ITsom 3 output. adjusts wights rfduce error.
* .ALGORITHM: ll'erbo. Alslillyer Pcrrcptron Backpropaatiom. to
* PASSED V4RIABLES: Nomt *
* RETURNS: Nome

GLOB.4L VARIABLES USED: II'eigtk Vectors
* (JGLOBAL V;ARIABLES (*HANGED: Weight Vectors
* FILES READ: Noe
* FILES WRITTEN: None
* H..IRDW4RE INPUT: Nose
* II4RDIIARE OUTPUT: Noise
S AIODULES CALLED: None

(ALLING MODULES: lass Loop *l
* a#

* AUTHOR: Gregory L. Tarr
* HISTORY: *

#d&An THETA TRUE

#inclmde "de:Lnitiou.h" 30

#include "aet.h"
extwu struct neursdnet net:
extern hit rountdisplay;
flomt neta = 0.3;
floit alpha = 0.3,
float delx(;
float dely():

hat miiummnlood;
fitat nhoodf: 4.
BACK.PROP() BACK.PROP

float ulmil;
Bloat del3siselJ.dcl2[size].del lizej.del0{size];

if (cont > end-koh{

/* otpt */o
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BACK j)ROP(backprop.c)

loop(oatpiet) 4d.43(jJ dely(net.outpW.Iaet.doftU]):
loupi(hidejwo){

net.w2WbJ1 += (aiet& deL3W * net.y2(j) *net.y2..masklil:

/0Second Hidden a

Ioopj(Ihidejtwo)
I dtr12j]= driel et.y2U].,d3.nt.Wr2j.outpiat); 

LA

liwetifj += neta * ded2(j

net.WIUI(iI += net& M e2(jj * t.yIfiJ* net-y.ynaakfil;

110

/* First Hidden/

4 ,ll~j=dylx(net.ylWldei2.et.wlj.hdetwo);
gwt.tooj] += mnets delljj

net.wooffl~ += net& 0 de4IUl *aiet.kI(ij net.kl..manklij

/0 end kob is the point where kehonen Sreening is turned off

ii~coung < ead..koli)
/ a djuoM neighborhood evenv fewn countsf
wait(200)f nhoodf = ,aoo'ir * 0.80:

airba alphs. * O..S:
coWT4 ):.
reetfi(45. 7.,200.95'): 9

anhood = (in~)mahoodf;
writeint(50,80."NeigbZh0od: ",nhoo.J);

Afnhood == 0) lihood =1
ifleount<400) nhood = hide..zwr;

/*fjind Mon dutloure nod(

mini = Minimum:

/ * adjust neighborhood weighse/

ffawi= mini- nhaood-i<imini+nthoodi++.k=leighbor( ,.nhood.hvideto))

toopj(inpoit) net.wk(kJoJ += alpha, netcinpojJ- ntw~Jj
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BACKPROP-neighbors(backprop.c)

neigbot( j.neigh.Ioyer)Uigl)I

iut i.oeigiaiayer-
I ant X:

*d~ko) xc=iayfr+i:.
elv. X=i % layer-. 11-0

return x-.

flent Y:
it (loft;
I float ded=0.0;;-

dd =y(I-)
5 ((loatdofty);130

return del:

Bloat d..Ixfx~de.w.n.tipper)

int n.11pItr;
float deltasum:.
ist ij;

sum = 0.0:
loopi(uplwi) sten = sum + deltiI *fll) 140

sum = x*( 1-x) 0sum;
return sumi:
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showinput(show.c)

* D. ITE: .1 Octoler 1988
* I *ERSION: 2. 0

$ NAMAE.sho w
M IODU'LE NUMBER: 2.5

* DESCRIPTION: Dispiava internal valves in the teriport
* .4GORJTHJLII: None I

PASSED V4RI.4BLES: None
RETURNS: None
G LO08B4L VA4R.IBL ES USED: None
G LO08B4L VAIA481BLES CRANGED: None

* FILES READ: None
* FILES WIRITTEN. Nome

HA.RDWA:RE INPUT: Nome
* HA4RDWA4RE OUTPUT:- Nome
* MOULES CALLED: None

CA4LLING MODULES: Nome

.4 UTHOR: Gregory L. Tarr
HIST'OR Y:

#iachtde "diet initiow. .h
exten struct nteural-net ntet:
e.xtena ht rount.right.gue.,good.tst.diplay; 3n
extern Boat nhoodf:
extena flot alphaxconncieuce;
hat 10 =1:
int 11 0:.
W&t 12 =0:.
Wet 13; 0:
hat 14 1 :
extena FILE *fit;
SI[IW() SHOWV

( iin I0) slaowiaaput(iawt.ialp) :40
ift 14) showoutpul( mat.ouitp,iet.dIort):
printI("&lphs, %3.2 Conscience U3.21\"Aphaconsceace);

showuode'(ovt.k Iscoo.hidezxero."Conaciesc.")

/a.4bowweigtsnrt. wk, Pi I(k1-.on. J.hide..:ero. inpoi):

nlaowapumt( ) sI.owiu1)ut

hit ji:.s
pwiautr( "Nutilay~r Perceparou Nodtl\u');
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showinput-showweights(show.c)

loopi(ioput) printf(1"1.2t ".(ij):Iine:Iine;

float pright.pgomd;
sbowoumtputiY~oft) s11oVoutput

&Mot yo.:
Bloat Iofto..
I mlt ii:.

Einal "r.
pintf( ROut")

loopiloutput) printq(".2 2 ",y(i]);Iine;

printf( "DoIT:")
loopi(outpt) pringt(" 7.3.2f ".doftjaj); line.

pright (floate)nght/dusplay * 100.0:,
1ugood = fluat)good/display 1 O0A

printQ("Cvmt 2 \MWgIpt:72.21 Guosa :72.21 \n",count.
pright,pgood);,

(pnintf((t."Count :7. 14hu:7.2.2:1 Gusss:22.21 ft.cont.
pright,pgood);

fflna(fst):.
right--=0:
500(1=0;

RhowodE~y~nrneIs)showuode

final :
nil nv4

W&ni ij:
at nisx.1nn;b

line:
printr (ou .wu:i
loopi(a) print(".2tjJ:ie

showweigh*. w,thet&.Iayerrtapper.Iower) shonwcights

&mot wDlsiiel'tivetao:
it layer.ul-t.l.ower. :
Sit j.i.

fkmam2nih
line;
loolpiikywer)
loot~iupper) I4if (wWI[iJ < 0.0)
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showweights(show.c)

else 
I

printf(" XIIf ".wW1):}0

pin: " hoa: A)
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(renuxc)

* DATE: .1 October 19884 * VERSION: 2. 0
* N.4M1E.nienu.c
* AJODUrLE NUAIBER: 2.6
* DESCRIPTION: Provdes of anterective inc. a options

* .LGORITHAl: None 10
PALSSED VA RIABLES: None

* RETURNS: Nome
(;LOB.L 1:4RI~iL:.i 11SED: None
GLOBA4L VARIA4BLES CHANGED: None

* FILES READ: NomeI * FILES WRITTEN: Nowe
* IARDIVARE INPUT: None
a HARDWA4RE OITTPUrT: None
* .II LES CALLED: None

CALLING MODULES: None 2n

A 417THOR: Gregory L. Tarr
* HISTORY:

aixteru ink din-clanimmarpe.exarntest:
eaxtern float uhoodt1:
extern float aid.,noiee.alpha;
extern int aetivhow.wghwndixplay-
exten float thrcliold.adnouc.conascieiace; 30

#includle <signal-h>
#include <s&(io.h>
#iuchade <gI.h>
#include ". ./wacker/doilti ions.It
#include "not. V

extern ant nwtakos:
extomu struct ,aenral-not net;
extern ant count~right.good,guem.test: 40
enteu inkt hide-pooe.hide zero.bide two,injlput.odtpuI:

inkt lwn%§()

char selrt~i'.Rnaane(2Oj:
mnt nodeunIee.wsee~tor=TRITE:

system( "clear"):

priiat( ("1) Initialize Systo")Iiue.,
rinmtf ("2) Save Veights")iiw:

22: 10 Nor .J0 1988 Pee I of ?rnx.r

aA



Printf (ft 3) Read veights "),line;.
print( C 4) Toggle Act/Vvights ')line:
printI C' ) Add loiss")liue:
priniV ( 6) Display Intervals")Iine:
printt C 7) Toggle Erzrr "):line;
prntfi 8' ) low Not Topology")Iine:
jprintt (" ) ZUn \="J. I
printr C SELECTION: *)
fflwh(stdin);

s.t=getchar():.
switda(sedect)

caws1 'e:
gexito):
trxit(O);

came ' init..data4):
pringf( "Eater alpha, conscience, f irst. s econd: n)

/* alpha =.IJ~comeee 0 .O-.thide.-rv 10J:
bide one = 5: ~

scanIj "X %f %d Xd"&kaipha,keconscience,&hbidejeto.&bide.one);

PAWt ("\a13.2tf %3.2f Ud d\a"alrhaxcocience.
hide..ero,hide..oue); so

-break:
case '2': write-weighats

;brvak:
case '3': pritR"\ahter Fileasm: \a 7 -)

rradweights (filne);
pviu~(m\z Is Iustulled\&Wn,filemanv);
break; Po

case '4': ativ =TRITE.

break;

CAme '5': printfl"Iov much aoiLs*- ?"):
wan(".&add-oie).
break:

case W6: Pritntfl"\acount between screen update ?\A")-. ion
sranf( "d"&Akhow..weights);

rnntltC(\ACWMt between tests ?a)
scaaR("Id".&display);



readweights(mnenuxc)

break:
CAse 'N: Ysten11("lGleU)

pr-iutf( "Ie Network ropologya"); IL
printf("Iusbe? ia KOhOIeLayr9l2;l

prilitf("Uuumbez int First Layor\l");
scanr( "d" ,&hide.pne); .
priujtr("Uaber in Second Lay~r\R");
seanf( 'Id" .&hide..two),.
init-nrtO:
nlmoodf = (18oat)hidejemo
alpha = 05
nhoodr = 01flOhdtidiezro;
,jrjjtf( "alpka: i. 3f aboodA . 3.2f ",alpha.iihoodf);10
break-,

reat~eiht~ (flenme)reitlweights

FILE *l'l);
Beoat X:13

rp = ropen (filenae.'r");
if (fp==NULL)r
fprintfl"\a ***File Krrr*' \Am)hrv'turU:I
ftaed (fp."Xd d %d Ud Ud

&-outpu.kbideIwo.&hide~ofle,&hide-zeW.&input),

iiet.w2iJul=;)
Ioopij( hidej.wo.hide.oII)f

net.wklilU]x;)

Ioi(hideonehi e.fst(( ,WtI*
kvopiah(f.1e f &X); "",qtA~);

fxcajvr(rp,"lr.mxu):

lopIj(Ijoutw) {rwsanrfp."UI".nert.y2-ns~+i):)

loopi(hlidetio) 4fea(r's.itylaki:

NcOuulfp):)
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redwihs. nAewegtimenuxc)

V'0

write.weigbhs 0 
write..weights

I FILE *rp:.
iaut ij.k.

p~r i.nater j2oam

,eant( '1."A.lensule);

rptintf (tp."24 U U U U4 \A",

Io Iotpt'lid..twITO

Ioopij( htidt'oidc.Ofl'I

rprintf(fp.*Zf ".net.wklilb)ij): S

Iooi( ifo otpoht.2Iffpi~ p* \nntt2o)

Iooi( i i e _.fl~t) jpiIQp

Inopi(id..tWO) f rpIrin(fp.oX f"'eL tl)

rpri,,tt((p."2d \n"eomit):

foo)pi( ide~to) frpriutR(tp.'iU \xftnet.y2-nmhi~il);1)

Ge.cyisht o~ 
save..weights

I FILE ofp;
C. iut ij.k;

chstr filrensmua201;
fp = frtj'en (Okybridm..*:.""v"):
rriit (fp,"X 4 24 24 24 W.

ou othd~w~ieon~iesr~nit-
toopij(os~pIt..II.wu) I4

C.. t~printfp."U ".uvL-w2tilljl.i4):j r pnntf( V."WO):

fpriastf(p."21 ".Iwt.wOji)Jj):

fprniftfp.*%t U4 ".ohoodfalpba);
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save weiglits-write int( menu.c)

1000a(0t14),1 4 fprir( fp"% \A" .netA2[iJ);)
loopi( hide.two) 4 ribjtr~p,.%x rawt fil): }
frintf~fp."x \n",coulit):

loopi(hlidoe.pne) ffprintf( fp."U*\".~~ ~~fJ:
loopi(inlpgst) {fpriiit((tp.mu n.atilrnnki :frloo.e(fp).prnia~fu\n Voights Stod\n"):

write. -triiig(xLy.ltitke) 
write-stiing

char title[201:

(char nmuinhur(20j:
I= jiUt)j(tot)l/vid.O):

iraorf 6):

linewi(Ith( 1):

ellanttr( title):

240

write fluatink x.y.I:
char titlr(201:
Bloat ft:
in&t &-color-,

f diar ntinilw*4201:
I = (it H(Boat I/vtieoj.

co~or~ acolor);

linewidt~lI):
rnglOv2i('x.v-)

Write -irt(X'ttept) 
Write jut

chats tt1([201;
int rt:

I dhar mlIiilberf2l)J:
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writejint-write.aniat(inenu.c)

color(t £LLOW,;

color (BLUE);

-harstr~itwnberj:)

s-rit-auy:

it rt:

dw ca nimiwr[2O):

spaintf(aiunmber): ) It):
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DISPLAY-NET(displayxe)

V ERSION:

* NAMIE: DISPL.41 NET
A MDLE NUMBER: 4.7

* DES~CRIPTION: Displays antemaj ala41t4 in a graphic formal
ALG;ORITHM: Some ZR

* PA4SSED VARIA4BLES: None
M ETU'RNS: Nome
GLOBAL 1"ARIABLES USED: None

* GLOBAL VARIABLES CHANGED: NYome
FILES READ: None

* F'fL&' WIRITTENV: Noter
a HARDWA4RE INPUT: Nome

HAR.RDWA4RE OUTPUT: None
M IODULES CALLED: None

* u.4LIXG MODULES: Nout

A4UTHfOR: Grejory, L. Tarr
* HISTORY:

#inahInde "deitio." h

*include "gi. ho
extena int coint.night.good.tst.miatinunctype.
extern struct neura~iet net. 301

exteru Boat pright.pgood;
it activ = FALSE.

MlSPLAY-NET() DISPLAY.NET
it ij.k:.

cuhar cks4IJ;

writeustrig(4OiO.2!oO."Valu* clse lIght"):
write .string(430.540.1Ir,)."Deslj14 Otput'); 401

writae.strng( lO.730.300."11brid Propgation Network"):

plotitode, (2.ne..y I net.y 1jiak.net oidtp-mssk.net.w L hide-on..,ouf plt:
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DISPLAY-NET-plotnoded(displa' -c)

plotnodek(1..i.I z.. rak.syInikie a.IieeOhd..oE

plot not1#413.0et.oft.om pti);

platnodNI( 3. 100.net.elart.out put):
1)Iotnio4ie'd( 3.200.itet .dott.outpi)-.
plotnoder( 0. 7,0,11--t K I .ide.ero): a.

plotstatx4) plutstats

w ri tejoaI ( 10. 320. 130. "Right: "ri gl I .I(M00:
wr i t-efloaL ( I W. 21.30 "uesu:a.pgod . i 00):)

Bloat thresliold = 0.0;

plotuodei(x.nodr.Iowpr) 1)lotuo( L(
imt X:
B foat iaodeflj: so

iut lower:
I in ij.k.y.x2.y2:.

y=spcing x+310:
xc=( I 24-weightp* lower) /2.
loopi( Iower) I

se't~colorl 1. 1.0.0Oijiaode(tjI:

colnr..of(0.S,0.I .nde(iJ): -

Iiglot(iweigWf-+x+200.y~wigiat../4*3);

jut xLy2: 0

nsit lowert:
I int ij.k.x2.y:

x=f 102.1-weight slower)/2:
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plotnoded-plotnode(dispIay.C)

Iootij(Iower)f
Ioopi(Ioweni

coior~po.9O. i .(flot)noideij);

plotnodeil x2 .y2.anodle.Iower) 1)iot11oter
flat x2.nodea:-
itt Y2.,
it lower:
I int iij~k.x.y:.

char tu.nt43):
y=(iut Hspcmgx2+3.)
x= 1024-weiglmt.pslower)/2;

set olort naxr.nainr.node(ij):
big.plotj iwight..s+x+y2.

y+weighLs*2.weight../4*3+ 1):Ia

coloaj(T.LLOW):
write an..ant(iweight-.S+x+y2-

3.
Y+wpishQ%*2+4 kelawriI).

plot~nodet x.nodeanaaktankimkup.arr.Ov.wrupper) 1)lott le

mnt Iower.uppef:
Snat ij.k,xIlx2.y2:
Bloat nuivc.nin.tetnp.9enip2.
cursoiR);
y-"sprinpLx+3O:

liatewidti( 2):
Aintdsax( arrayi m&nax.& min.upper.lowrr):
IoollilIower) I M 11

0 lubig plot~ ilweigluts+xlI.y.weight.-s/4*3):

Ioopjlupiip) 4
iflttnkviol== 1.0)4

at~coloftj Snifli.arflly[i]jJ]):

!?':/I Ivor .10 1988 Page -1 of dEwpIay. r



picitnode-flndnhax(displayeC)

x2+weilts +S~lI) .1gts ~~eih..* 4

eolorlmrt 1024-2543~y + t8.maxsnitI ).

plot io~el] ,itxiask ink.ias- PO .ATra 1sa

in& lower.upPf*t

float mtux.niiu.tejup.t11p
2 .

y~jtpil*x+3 0* lwO/-
.. I=( ILYM-wPigI3-1 *ower)/ 2 .

., = t0 - - w i h t.. S

Ioopjilow)

Ioopi(lippet){

draw it(x I +wights i.y+ wIight-ss3/4.

cooir2+w256t +~'~~S

jut rar 1j~I=~~1O2426y+U.1111lI)

fin=axarray[0C)[0):.USiIS

if mt ijbijkl

Io~a~ot8~ if (arrylfi< *')ta) immx=frkvui1:20

"::] Nor *i0 1988 
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findnmx-display-count(display.c)

float array V1.msx. mil
int lower:
I iut ij,k;

111m = artay[OI*:
*PIlx= array(0J: 2-

lo~~ w'r4 if (arrayjJ< *imi) uuii=artayj; LA

if(arrmy-j> *max) *naxarayW:

dta~lvcoumt() (isplayffolut

linwiwt'th( 1):23
color(-,):

rvcti(OO.tMO. 1023.6320);
color( .5):

write.,int($O0i.$03." "'Count ):)

22:11 Nor .10) 19-1. Pate! S of Ade1111. c

-A



DO-TEST(test-c)

extern it couint~riglit.goodl.test ..xainj-estexamtplarsanpe.typ.;

#mnchsde "dsfilit ion.
#UWeflid "not. h"

"inide <matah.h>
#auchide <sidiobh>
it nuistaks-s = 0:.
exterit FILE *fst:

CIIEF(KER RORlS(y~dofl.) CHECKERflORSp
float y(sixej: i

- float dott[siie]:

float errarfaiv-1:
jut corretr.glt=0;
jut corvdjtood=0:

Ioopi(oumtpmit) { errori] =tnft.[iJ- yilj
if (efrortil < 0) efrr(i] -Prrortil:
if (errorfi] < 0.5) correcd.good.++:
if (errorfi] < 0.2) correct -right++,.

if (corrwt-good == (output)) good++:
eLse
if (mnistakes) printr("Samplo %2d Type Wdn".sarnplexetype):

if (corr.'etj.iglt ==(output)) right++:

float err.oldperr=0.0.clcvrr-0.0:

(iIIE('K(y~doft) CHECK
float v~uizej:
float (doft~uizeJ: 301

4float miiwrd.y:
last ii:
Ioopi(ouutpsut)

miowd.hy = doftfi]- y~ij;
rr+= mmd.y*niamftdb..ky

IQrsr( DO-TEST
juts:;

FF.ED.YORWARD():
t-IIE(.KERIORS(net.coutp.net.doft):

printl(I"! t: 23.2 %3. 2t \"(la rg~/ la eau~eI*10
(flnAt)good1/(flot)xau.,teat* IOU.):

fj~,itf(fst ".*T: - 3.2 %3.21 n (la~ih ~la~in~u, 0.
1flomt)good/(float exan%_t"1 * 100.):

IflvI(. .): ins

22:121 Nor .10 i18 Paf I afef fr



DO TEST-writeerror( test.c)

err= 0.:

Ioopi(exampIArN 4
NIA K E-N PI 'ritiil.net .daftti);
FFEI)_FORWAiRio.

err =(fiomt),wrt((dot~ifberr)-:
derv..rr (e~rr - odf)
olderr em.rr

writ..prror() writ e-ciror

write-jloa1t,II. i O.1O.Chang.: der-~r.3);

MIN



(kohonen2.c)

' *9*99,9, **9*.*9**9**.99*9*9**9******9*595e,88es, OBr,,jo~~ajoa,****9***96

DATE: ? October 1983
• VERSION: 2.0

* V..AME: Tero Dientonal Kohonen .11ap
* 3MODULE NUMBER: 4.0

* DESCRIPTM,,'.:
• .4LGORITHM: None 10

* PISSED ARI4BLES: .Vone
• RETURNS: NVone

* GLOBAL VARIABLES USED: None
• GLOBAL V .RI.4BLES CHANGED: None
* FILES READ: None
* FILES WRITTEN: Sone
* H. IRDIIARE INPUTT: None

IIRDIIARE OUTPUT: None
S .MODULES CALLED: Noae

CALLING MODULES: None 21)

* A UTHOR: Grylorw L. Tarr
HISTORY.-

#(kflne kIononen I

/* I tried to keep as close to the original article as possible
30

#inrlt'ule <neiR4lh.h>
#iuclhde "../Iraph.€"

#defi.e mide 20 /define s:, of one sde /l

#define imax sideside /* naniber of neurons
#deflne jimsx 2 /* no of inp"ts /
#'Iflue aO 0.3 / starting gain */
*l.fllue g 0.2 /* intialation factor 5/

#&-fl, e cl I / * color use in plotting points '/ 40
#(efi-ne ugpdaL, 1000
eninu dniusilyfuitetiont {mitare. triangle. croM):
ittt Ik.t l.Lt2.wO.w.h l.h.v I .v.ij.c:
float .a I .a2.aminy.a ti im. jU a.].xmiaxi., [imaxIl,y (inms.i:

a current alpha inlwne
d0 staring alpha #,aie
al
a a.

Sion,.ffnar ehs /or - - -to - ---
roppla] M1~ - r ralise 41l] -I rele(

!2:)! Nor t Page 1 of 'konew!.c



main(kohaneu2.c)

float random( .gauseO:)-
ink plolcolorci):
euuua dellsityttmnctina dentsatyfunetaon:

m)aint) luain

/* get type of fanctiis /

sraaadl2. 1): /set secd

a = 80: &1 ft; WO = side ,2. Ui = pat 0 to; t =0: tk 0;

for 6=0. *snlax:. i++)
1i)= 0.U.:

for (j0: j<jimax: j++) I
niiljo = (0.5-g/2.0) + &*((BiomAWrxudotfO)-

safi] = nfi] + n,(ij~ilnt(iJUi;
/end j loop

sai] = sij / 2.0:,
Iend a loop 0/ so

spdate..icreeno:

While (a !=0.0)

for 4t=1; &<=tI: t++.tk=tk+1){

/ k = tk + 1:

mainly = n(0J:,
for (10:- i<tmax: i++)

Y~iJ = 11i');
for (j=0: j<jmax: j++) y[i] = ,4J- m(aijj * cj:
if (y(ij <= suinyj nn

n1itisy = yfiJ:
c = i

I P '"d ,f
) /* e(d fur i loop 0/

at = a*([.0 - (ficwttl /(float It ); &2 =1.0 - al:

22Nor .10 198 Pp 2ofkreru



nua-readinput(kohoun2.c)

IfI C% ide:
v I / sidr:
w =(ink)((fiowo (1.0 - (floatI/(fioat)tl)) + I;

for (Ih=nIax(0.I,' -w): <=mnie-Iulw:If++)
for (v=nvax(OsIl-w): v<=nsin(side-l.v14.-w): v++)

i = sajd?-v +h: u4,] 0.0:
for (j=O; j<jinax: j++) {

m'tuB] mtx5J + a2anvi~ij:j
o(ij = nl + rn(i]"nifilfjj:

I (I'd for j oop/
nfi] nfi] / 2.0;

1 / * en for r loop '
/* reed for If loop 0/ 120

if ((X(O1 < 0.5i) kk&( xfi]<0.5))
colorsIVIITE):

Plae coor(NA(.ENTA)-:

IIOLinputo-:

if ((t % 42) == 1) upfdatejwrreno,

) /* end for I loop o/

a = 0.20s; wO=0:. tI=50tI t2=5Yt2-:

/* oa4 wksk loop, a/

/*u codasif. program '

rpadinput()redu t

W& insier 144

insul.. = 0:
whIle (inside ==0){

'ir'(I.,nityrusie){
came muarr, isijde=

brosak:
camm triangle if (x[t] > 2.0*ra"nX(01 - 0.5)) insido 1.

CA"e rro. if ((ales(x(01-0.5) <= 0.1) 11
(falss(x(IJ-0.'i) <= 0.1)) inside =1:

break:
looseuu of cast I/

/* end while loop/

en p r 4wp '7

22:12 Nor .10 1988 Pooe .1 of koesse"2.C



readinput-dr a-di~ribution(kohonen2.c)

*if FALSE 11

higpio4( x2 .y2.si) Jbig-1)lot.

irawit( x2,y2.x2.y2+9a):

#udif

4 int aic.hy:
ax=(iu~p(200.0 + x(01 * 200-0):
hw=(int)40.O + xi;' * 200.0):
bigjilot(az.hy.3J:j

Smut um)

Ai += raudoui1):

ifrawditribtstou() (rawtllstrfl ut 101.

#d.4Aue xw 300 /* dt'jint r width of plotting rnre /
#oet-fne yw 300 /* define I indfA of plotting iv. dew

#tb.4ne xh 0 /* rhr ~ ion s * e
#dt4aae ybaiWn 0 /0 uberv g=0 o pem aslyi

int xi.yl.x2.y2:.
I * tod of rose

x I Khadw:

x2 xm +w4 xhaw:
y2 y w + yhow~:

m~ov2if 0.320):
ebvarnfr( "Koboses Topology"):

2:12' Nor .10 1988 Par 4 nflAokomm.c
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drawdistribution-d'wia(kohuel
2 .c)

recti(x1.y I .2.y2):.

co"WCYA N);

rhmnot obono Rap,)

color(BLVE):
weti(0.400.200.dW):.

colct( YA N
rim2,E23O.120):

cihamrat "1aprowiatriatln")

coioI3LIFE);
mw'ti(2 01. 100.400.600);

colof(YELLO'W)-

for ()-=O-, Ii<ueiA- hl++)

zl = (xw iimfh)401) + xbaw:
yl - (yin ni~hj[.]) + ytmi:
x2 = ',xw * rnsidehil0l) + xbame:
V2 = (yin a,4id.otaII1J) + yiwa.
drawfiuw(&xI &y I .Jmi&); drawlino( &x2.&y2.mdeh. 1):

for fv=J. v<side-1: vr++) i
tIrawlinc%&xi.&y i.sidclv+h.0): 240

r / ad for r lop

dratwii'4 &xi .&y I Aitie(e~f- h .0):
drawlimw(&x2,Ly2Jh1eb44klC1.0);

) /4cd for A loop '
2W0

) /* (*a dill rdsr,6010a 5

W& xo.yO:.

xo= xh: *xh = ((xw/2.0) '(niji2][0'j + m~i2+eJfOj)) +q xliame: 260o

yo = *b yh = ((yw/2.0) *(um(i2j(IJ + mu(i2+eitI])) + yIbuea:

!;!:I;! Nee .10 1955 Page 5 of &eheanru2.c



drawline -plotweight(kohonen2.c)

4if (a>b) rotiu a:
ebie returfs b:

in* &,b:
Iif (&<I)) rettn &a.

shke return ii:.

flnit ramulom
B oat X.

==((fioa&)nd) 32768.0); 2

return X.

#dflaa. wrigIiis 8

pk~uwq-iSlIO plotweight

I iit ij.k.whichjiz~iy:
float 111mwiht.axw..n~ht: 2w

/ * Get mmmnmm and *minmsm veithi for piostoug /
fort which =0:whidajmniax~which++)

lfiwr (k=O;k<inax~k++){
if (m~kj(whicb]>nmxweight) mnnmight=nm~k)[whicnj;
if 0(.mkJ[wlmchj<ndunweigh9) nwchanklwk];J

Now. plot the freihts

forl 'whidm=0:hieh<jrnax:wIhich++)
for (k=0:h<iimx~k++)(

ix=41i0+22*whmch+I weighl..+2)(k/ide):.
iy=400+(wo-ightn.s+2)*(k~tidi);

,?a"r ploteolo,~rmaxwtight.niwight.nik(vbmh)).

) 31mm

/* dmiuploy a color bar so show the range of the weights~

colorhar(40.3iOnxwigimt .miiwe-ight);

-MUI. Nor 30 1988 Pop 6 efkoheuer.



plotweight-update-screen(kohonen2.c)

$dkfln TABLE 04
in& IOiv(ll#4l~Ax~rtIiuclu)
lmtd uiai.mrn.iaiue; 3?0

Chit afx.y: llxlli1

float max.mn
Ichair ,niaxptriig[201.nuinstring[201;

cmiov2i(x+.iOy+2O I;
Charajminstring):
rinov2i( x+400,Oy+20);
hlarstrIl aaatring):

in& x.y: 341

chaw tatle[20J;

{ car nurnber(20]:

iprintf(nuwnhcr."2d" .i):
nsmv2i(x.y):

charstr(numaber); 
36

write.jlOat(XY.title,ft) Wl..f~t
int x.y:.
r.Iaa titlet2OI:.

4 char nurnber[20J;.

sprintl nurnher.w231.)-

imov2i(x.yJ:

rIanr( nunalier):)

{lIrawliItribition( :

colorf((EEN):
write-float (700.230."Alpa:".sI):
writ..Jim4tegr(TOO.2tJ.Comt:"t)

221:1! Nor 30 1988 Pqrf 7 ofL.ur.r



tapdate..screen(kohoxieu2.c)

wapbfli~~~;370
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initialize(graph.c)

#indlude4.w ice.h

#dc4lue video 0.57

iIS~tA~i~() iitialize

winwpn("kob"):
dOUIowlu ffer() 10I
grosafigo.
I'iewpomtlO.ljut)( 104-.*vidk-o).O.(izt )f 1047.*vitleo)):

"AoIo A('K).

rhmithu"fit FALSE):

lisiUCtj(Il );
nnow -thin"~4): 

1
for (i=8:i<034:i++) nlapoloui.i4.i4.i);

tdevier(MNIDDLEMOIU'E):

#lif FALSE
rlwekjtnputf) check -juput

4 shot Val;
Wea X.y:.
car wmisag#.f20J: 

3
it (fktOt!=O)(
switch crd(vI)

came NIDDLEAIO1fSE: /",fjral==ijf

dis~clam = (cdinclaa. + 1) % 3;

break:
J~j 40#PaaUfi

*ifidkf [rrertrou
#dvfane TA B 1, F 5I1
#4"tiza IIAiD ON RED)
#dtoime iNI)FrERRM (IEEN
#dqtfaae IIAHDOF BLUE

Sut ia,.

winnfb4n( "uet"): s

2:. o'.30 198Pete I of grpA .



initialize-name.thi~ngs(graph.c)

colorj HLACKI):
cetarf):

cniov-2i(400.700):

0

dcartl Ovpu")
cnwvi2i(IO.Eid0):

daaistr("Uuof ):

chaustrt "Outht":

crnwv2i(AO.OAOO):

daarstij"No. Wt")

emnov2i( 10.2.5);

charstr("Uide Y").

charstij "Imp T"),

uiiaepcoor(,HEEN .S..50..5F0):

fowl i=T. BLF/2.k=Ojj<TARI,E+Rj++)
Iif 0j<2114) li--: llflPcOlOrij.U.7O.i):.)
if (j>263) (k++: mapl)orUjk.70.O):j

#Pudif

nanwjbIinp() iauji
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namejhings-plotfire(graPI).C)

eoklo)cnovi(.M)Ch~ft4 "jeep"):
eol)-ctiv2i(O.640)'charmtfCPOL );.
rolor( 7):enmov2i(O.66o)Xhrsftrt",track"); l

#fpeffeptron

#defin weight-pa 13

ant xy

We inpot;
fiot usaxweight.mnweight:

i n& ij.k.whmicha.iy:

GO(. maja,,uaus amd ,mviiat", we.iht for platting I7

findaniax( afrry.&naaiotwaight .& ninweiht.otai .inpj);

20; y +=20;
PNOW. pio1lt Ikeghts8 line '

taW (i=O-.a<iup:i++){
for U=oj<wa14j++) 1 3

art color(aaaxvright.miwCiSIht,&Thyftl~uPUt+ij))

big o(jW.4 St)+LiWeightS+Y. Wright_@9- 1):

p~onode~xzy.node.Ieng) 1)lutuo(Ie
int X.Y: 140

p Be.^&tlnodrO:
W&t liig:

"tl - olor( I .0.l..,oldafi]);

plot flrw.x.y.i.o.node.I'flg) iofr

fitnt I.Iond.U

hat Ion;:

22:11 Xe,' J0 1988 Page I1 of gaph. c



plotftre-colorbarjgraph-c)

eolo~hiIo~mmw)color-of
&Mut hi.In.vaR11w;

ivoisw > hi) eo~or(1IAI~flON):.
if~va~uw < lo? color(HNJI)OFF);

IS

int x jy:

Ioopi(Icn< 4"i)*~fmralj

float 11aux.iiazmi

i mt ij~:
rmi at%raf 2j mntig2j

Nor (atayi IMua flleJ4(of gtypiI
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colorbar-drawit(graph.c)

roloji);210
bWg.pW21 x+:#12.y.I. 10):)

springI(mraxtring.*U3 .flnma):
sprilitf imkisriag.U. 3~u

iffgplaof(r+30. #+20. 30, 10):'
r04041 YELLOW)
"rlOv2i(x.y):
chaatriistring):
/ rer(SL C'EP 201

color( YELL OII :/

ebr(v~alue ing) (m-~n SaHAL-

fVsi BM 40iuL

bihpatysipo-0 beojjx:
iMt .aiue > ua) ulu10tnax

2406

!:IIor y'.jo~d 198iief offilk,



drawit-drawit2(graph.c)

&moa xstart.yata&t.xend.y-nd:. 
27n)

ivuwp2l xotart .yntfrt :
drmw2tXrlni.yelvd).
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main( Error.surcxc)

* DA4TE: .2Scpf 1988
* VERSION: 1.0

NAM.IE: Error Surface Demv.n1raiwu
* MODULE NUAlIBER:5-0

DESCRIPTION: Error varfmce yen ralion Ill 333 loop
* ALGORITHM: Ferdjorrr Backprvpag.lson
* PA4SSED VA4RIA BLES: Some t

RETU*RNS.: None
GLOBAL VARIABLES USED: None
GLOBA*L VA4RIA4BLES ('BANGED: None

* FILES READ: N~one
a FILES WIRITTEN: .Vone
* HAROfIARAC [INPUT:r Your
a HARDWA RE OUTPUT: None
a MODULES CALLED: NVone
a c.4LJNG mODULES: NVome

a AUTFIOR: Gre gory L. Tarr
a HISTORY:-

Bloat w11[.w2=..x.youtptt.dofterroo 1..targe= 0.05,.

fliutt random,0
float randolusx( 1:

#tl41e video 0.65 .'1
#mrlade "surface. c

#.4"ue CIRAY 1000
#doltaa GRIAY2 1001
float netta= 0.3;
mut wI'wng=4:
iut whieh=O.whicIh2O:-
iut cheeck -nionmej
in&t rolit:
floa t aIrt-w I .art-w2: 4fl

4iuti:
float oldw I .oldw2:
lkug now;
xrantl(linw(know) %A 37 )
msmracq.TRUrE):

mtapl~ij ~r1000.100.100.100):
textI psor (To450.1020.0,220): Sol

textieolorICYA N):

12:14 Nor .10 198S Palc I of Errr'rr.r



inain-feedfbrv~Ar(Error-surc.c)

color( YELLOW);
initialize 0

fOr~i=0.cowi&0:i<20i++)f
while (errors > target (

niAkiinpnt0):
fteedtfrwMd0:
movelwl.w2.4 O):

oldwi = wl~oldwv2 =w2:

if 'whid,2 == 0)
,mckpropagate):

else backpropgate2().

if (which2 == 1) color(YELLOW):
.4. olor(IIF.I)); 

f

draw( wi .2.4.):

if (whida2 == 1) color(C.'YAN):
else ceoe(YELLOW).

pnt~olIwl .oIJw2..
ltruni 'A .5) == U1JQ4.st(i):

screen-woO:

i11ovp(w I.w2.4.):)
ibeekmow == LEFTM.OUSE? break:
count++;)
prientf"otart %2.2f %2.2f \a ead %22: %2.296
strt 1.tw2.w I.w2)-.
initialize 0

initializ'1 
iuitiaize'

4 I = ranid')II4);
w2 =rando(I)a:

Iuiapceolor(2.0.l28.O).
si.Rrt'wI=WI;
start.w2=w2:

/*Fredforrd b.ekpropelten rules/

tnp= wI~x + w2 *y + I., /* (hrid ts O~ '
outpunt = si~moid(temup). 

JIM0

flte d.oItax =0.0 .ddtaV = 0.0
loat olddeld 0.0 *olddudv = 0.0;

dlo"& 1111.m 0.0:

.J1 Vr .10 19J$ Pole 2! of Errovrj'un.c



feedforw'ard-test(Error.surc.c)

bakpma~st4) 1ackprop)agate

ohiddrlx = rnornw dla.Ito
oidiy = mou tkeltay;
del output *(1.0 -output) *(dolt -output)-.

deltax = nets del x.
du4tay = net& del v -
w I w L + dtAtaz + oI.dlex;

w2 w2 + dedtay + oiddr4y:

flew V.Q.R.ermorpriinw;
Aa A I = 0. 1. A2 =0.0 .A3 -0.0 .A4 =0. 1. AS =0.06-. 170
fluat U .(pena..noe.dei I ..Jddw2=0.:,

barkpopa~ae2()backpropagate2

V x A3*w+ AS dew)+ y *A3 w2 +A Sd tW2):.
rpritiv It *V.
error 2.0 * (daft - output 1
Q=lt v *no. 130
enrorpviiv = -2.3 * tpninw.
11=11 *(efrvorprtnwvmcn * (1.0-2.01outptj V)
delw delw -A2vIl

-A4 *doiwi
+ (Al I Q + R x

delw2 =delw2 -A2 *w2
-A4 * a@ew2

+ (Al *Q+ R ) y-.
wl = *I + dwI-.
w2 = w2 + de~w2: 140

pintftwl %3.21 w2 %3.2t 4.131 XI.29 4.192 U.2 W.
wI.w2.drlwI.ddlw2):

test

x = Piz;
y = ply;
daon = luignod2.0);
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test-propagate(Error.surcxc)

pintr ("Couut U Trial Ui \a".couant.i):
pntf (" doft osePat *rror \l 4
print( ("I 13.31f %3.31 13.31 \a.oft.mitput. JAL)

x = p2x.
y = p2y:
doft = mignioid(2.)
fredfbewardo.
del = &lft - output-.
priamir ("2 13.31 13.31 13.39 \a.doft.output. del):
errorm += squarildeI):

I = p~lx:
y - p3y.
.Ioft = uiginom(2.O):

4H= "af - os~m
orfors += ma~p~wM4J:

pristrf ("3 13.31 U-.31 13.31 \a".df.ontput. Mc):

x = Piz;
= par:

doft = sgnuidl-2.OJ:
r..dfomwedo;
Mu = daft - otpest:
erma~ += mrnumd);

pnaslf ("4 13.31 13.39 13.31 \3"doftmoutput. del)-.

y p5yv:
-loft umigrnod(-2.O):.

(w. = daft - outpt;
ettorm += nmsw.(.I):
)rtintf ("5 13.31 13.31 13.3f \a".dof.outpmsi. del):

x = pox:
y = pay:
lof' = sigrnwid(-2.O):
(ccIorwartIO:
Mc = doft - outpiot:
errocu += squat-dc): 2"4
priutf ("0 %3.31 13.31 13.3! \s".oioft.out'gt. &1m):

pitini ("M *=or 13.21 \a*.efrurs):

lit tt4~Mco prop~agate(

34MS me01tcl ot

w2 neuta tqlv-: 21om
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proPagate-nmakeinput(Errorgourec)

wi t ( w h i h

Ica"- 0: It Ox
Y ply:

break: 
~

cape 1:2 p2z;
Y p2y:
'10ft = signi"i4(2.O).
break:

cawe 2: x = p3:t:
Y= pjy:
(loft = *ifnid(2.O):
break:

case 3: x =p4i:W 
ma

Y p4y;.
"l. - Omoid(-2.0j;

aw 4: = Pix;
Y = 14y:
&hf - i~od-2.0).
break:CI .5: X = pfix: ~E

&mt rem.n

Y=(nnd) W 4000). 
U

2 = X* 4.0:

Yfrand() jr. 200);
X((oaly200.0 - j)

rwtun 2.*x:
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niakeinput-checkmouse(Error~surc.c)

411apeo" ow0. too. too.100o). ?TO

iaaqror(I 00 1. 100. 100.200):
qdp% ic(NIII)ILEN1OI!SE);

tridecL(RIC O'SE:

dw.~Ln~w~ 1check-monse

Boat t#nhp.xtprnp~yt#rnp:.
W Mftloord xn.ys:

iwt Wh'iet:
041st IvaIUI:

char rmage{201j:

if (qtstO!0)fcurgaftOnwnuo;

XS=g@tval1tatoil MOITS..X);

Ys=9etvsiu~or( MOUSEY):.

xImbw= (beeN,.- I 0)*0.02;
if (ivslue > 2.0) Xialsa = 2.0:
if (ivalle < 0.0) xvalla = 0.0:

switch (trcsd(&-vai)N

case MIlODLENMOUSE: fvilt)
x=etv&luatoi NM0I1EX): 300
ys=grtvaiuator(h ?tUSEY):
w2 = (11o004:00/104V. 2.0;
wt = (ftomt)(y9)/T68.* 2.0:

break;

eae LEFTNMOISE:/J.=i4)'
break:

.'.ae RIGHITMOUSE: if(val==1)( 31n

if(wlaic2 == 0) I

swite-h(spk.t) (
rcase 6: "eta = xml-

" rt4*-float (10.120.110." Ita: ".iwt&,(NYAN):bweak-:
case .5: nmn vl
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cbeck-mouse-write.float( Errotr surc.c)

writejfloat (10,100.110." Non ".motxwn.CYAN );break-.

chef 320

case 0: Al I v~~
write Noal (10.180.1 10." Al"A1C A :r~k

case 9: A2 = xvalsae:
write floa (10,160.110,0 A2 -".A2.CYAN );hreak,

case 7: A3 = xvaur-
writefioril (10.14l0.110," A3 :*.A3.CYAN ):bwk:

case 6: A4 = ivalote:
write float 10.120.1 10.1 A4 :.AI.CYAN);break;

case .5: A.5 = Ivalue:. 1V
writejflost (10,100.110." AS :".A5CYAN).hreak-.

case 4: which2 = 1;
if (which2 == 0) write.$triag( I0.A0,1 I."Vlrst Order");

*else write_,.triug( L.0.110."Seco.4 Order"):

cawe 3: i1gxvaltac == (i.0)lherrturn = LEFTMdOUSE: 4

else fco"o(BLACK ).cleowl); surf"cc IALSE):tiwiiaO)

break.

cm2:ifjxvAlu. == 0.0){Whfl (-WI=1) qrpwl(&VeI):-

O xto;break;

P -rodi of sif k

* )P eu td o1 f

ri turn Qw-rettsru:

writ NRoatfx~y.I.title~rt.akcolor) writce0oat

iiaar titH.201:

c rha~r ntimb.a'201:
L Is = Ot)0116oat)+100. I

cols-O. olor): .70
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w te-ftoat--secae(Error.surc.c)

eolor(YELLOW):
sscafr(' 00S.y):

rnmov2i( x-2.y):
clonrogtij itle):

w rite_:%tring(x~y.I.titie) %rite..striug

diar title{201:

I char nundwr.f20J:

eoW r4):

rW~~fti( x.y!x+l. v+ 1.5):

if (which2 0)f

write float (10.100.110,' N.: ".rnouuwn.GRAY):.
writejtriug(10.80.11U." Mert O4ri:I);

eise 4 writre.$riosg(10flO.110.* Secoaid Order'): 400
write float (100.1 10,.lii" Al : ".A I.(.*RAY2);
write fnot (10.160. 110." £2 : "A2.( RAY2):.
writefioat (10.140.110." £3 :w"A3.C',RAY2):
write float (10.120.110." A4 :*.A4.UIIAY2);
write flont (10.10o.110'" AS :n.Ari.(-RAY2):)
write strinig( 0.dOl 10." Next Clear");
wriieatring(10.40,1 10," Salt Quit )

evirison( :

I = x + 50:

Ioopi( 10)4
,iioie-2i(x+i*1.s+5%):dIraw2i(x+i*10.y ):diraw2i( x+10+i' 10.3 1:1 41"1-
Jraw2i(x+i,1U.y+5);
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(surface.c)

* DATE.- $1 October 193S
* VERSION: -2.0

* N.IAME: Surface-e

* DESCRIPTION: Sar4ee Generator for Error svre
AILGORITHM: Nont

* PASSED VARIABLES: Noneit
* RTURNS: Nomf

* GLOBA4L VAIA.BLES USED: Name
* GLOBAL VAIRI.ABLES CHANGED: Nome
* FIL ES READ : Nove
* FILES IIRITTPS: None

H ARDWAIRE IN)PlrT: Soar
* HA4RDWA4RE o(,r4T.- None
* MODULES c.lLLLD: Nont
* CA4LLING MODULES: Nome

* .4U'TIOR: Guigory L. Tnrr
HISTORY:

*..........eae.eaee.eaea.*e.**ee**.e.**

/0 S epan.., of Second file compomnt error.c

#naclllelO<gI.h>
#uchsdl<d.vice.h>
#harhde<mtfi.I.>
#d*4n. size .50 3

#dvfine Iie'Hoa) in("ooXd"a)
#deftue start (5.0)
#d.dtneinert ( -2.00 start/size)

float getx().
float sigooido:
float Ow-junctiono:
float stpiarol):

dlome arrayfniz..flsi2e);41

float Ilx.idy.p21.p2y.p3x.p3y.ptx,4y.p5.vyp~xpy:

j at = 1.8 20.): -

= arrayfiffJ:
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surface(surface.c)

rriarm

Odt flue TABLE 512
#deflne up (0.0 iticre)

4 foa x.iui.yn.y:
int ij,k:
Coord psirty(4)(3):
Volofjndex iarray[4]1;
clirsofl): 

:

ififat, == TRVE)f To

for (i=0:i<qiz:i ++.x get x(i))~
for (j=Uj<sizpj++.y=etxUM)

srrsy~i]j=jf (tlvefunactjion(x.y)).

fialdnAi(Orray);

ginito:
gConfigo.. 

so

"i=TARL~F2.k=Oj8<TALEji+)
I if (j<2561) ii---. rnapoloj.O.128-i/2.i):1
if (j>255) fk++:. ,npcokowj.k.i2S-k/2.0-:1)

cokuor0):

cokwr( LACK (:

zbuiere(TRII E).
seleatr()
(Iraq rO):
for (i= H i< size- I :i++ ){~gtc i)xfgt i +I).

fur (j= I j <Size- I j++i )ygetxU ):yn=getxtj+I);

parvay(OlltI X.

parray[0112) arfaylifjIl:
,sfRaylO)=grtcolofRi aRraji1W):

patrav(IJ(O1 x n-up:

parrhyIli2I = srrilyfi+IIUI:
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surface-normai(surface.c)

panfay2 1,'Ol -wi-up.

Imfirny2J[IJ =YU-p;
panoy[212= arrayfi+Iljb+iJ:
iatray(2J=g-tcolor(arrry~i+1Jlj+ ]): tin

pRarrar[llJ(l) x:
IbArray[UIJ(1, =Yta-up:
pRerav[31[21 array(ilj; I

iacray(3J=gevcour(arryi]i+ I]);
splr(4.pjArray.ianray):

color(CYAN);.

zbooffmir FALSE):.

IIy=2.5;

p2x=pilx + rudomxo: 
3pty=ply + frandotuxo:

p3x=plx + ranclcmuo:
PIY=Piy + rukmaahO: 

-

;~i=ix+ ranmkrialI; 
144)

p4Sxp4x + randonixo:
P43yip-y + randonuxo:

getrQo~jz)getcolor
Bout a:

Colorindex light:
light = (( lociiilEex)(TABLE..20)*(s...nil)f(,i....xni));

11orm~al(X.v.2) 
uoriual

&mot *X.Y.*2:
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normal-drawfloor(surface-c)

*3;

x (filat ) r((oul a)

float PAItAM()

Y = I+~~~

efoM signaoisidi~l)sgmiy)pi pyy

wet'tz3 s.to + p(Eoat~i) sxp(-dubhp~sxy+)))):l

(ra float y
yok I= Lt - ?In
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drawfloor-screenjwo(surface.c)

coboiCYAN):

riw(O....I.01):chnnmtrl"Z"):73

fludilax(aaray) idxa

#de&4i kwopi(ON) fnsjia=O-i<ON~i++)
#doulue IoopjfON) foe(j4-O<ONj+4)
#dimn Ioopk(ON) fo.1k0:O-k<ON:k++)

4 nt ij.k:
ant lIlaxi=0.rna~u=0:24
int miui0.iikinj=o:

tatin =array(O][01;
max = array[UJloI:.

Ioopj(Asze)f if (arrayojJ[ij< ini) nain=arayUraj;

if (array~jJfil> max) max=arvay~][i]:.

2141
)priatf ("U U4 Wa.max.rnin):

)seresnonsi: .cuoue

4outIuAo(.0.(Bon)XM AXS('REEN.0.0.(float)YMIAXS(REEN.- 1.0.1.0):
Srith-ipth(WxOO.OxFOO):
riewporl (0.1 ink)( 102J3.*vitlo).0.(iant) 7 67. Oid.o)):
gwtisrtive( 250.1.0.2.0.-2.0):

wf"to)sremujwo -

Ieft -I.riglt = .I.:ottono -1.:Iop 5.
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sc--eefl two--screen-three(surface.c)

ortlmo2( i nghri~ botint op)'I

Virwor(( )(7flO.*viden .(tut )(9fl(. .'viden)

NKm2(Iiottom):draw2( i. top):
rokwr(ILIIE);

cniov2( r2x.p2y ):charmtr( *"):
cnov-4 p 3 x~p3y)-:ehanmtr("*" I.

color(BLA(K): i
eiov2(pi4x.p4y );clarttr"*"):
ernov2fp.5x.p5y);crjtnr(" *"):
cniov2(tpdix.tdy ):ebarmtr("*1:;

movp2(0.0,O.f/w2):
draw(!iOO..(-(wl/w2*5MO.) 0./2)

drs~-.OO41w/w2O .5/w))-

ntuon( )- 290

merwe'n..Ih"i.) sre~.
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ABSTRACT

An environnhent is developed for the .i tioy ori dynanmic chiniges in w.it.rims or

weight ad IOd! valite for art ificial neural networks. Graphic relreselltations of

neitrill network iiternal states are displayetl usiig a high resolution video terinal.

Patterns of ile firings and cl ilges in weight, vcetors are discllay l to provile in-

sight duriig triullig. Four patitrt recognilion proleniis are a plinl to foir tYlps

o of artificial niral networks. Using simulatl data, a simple disjoint region clasi-

- fication prolenl is developed and examined using a Kohonen net Prid a inllilayer

lfeedforward lark propagation (hIFB) network.

A NIFB neural network is also used to siiilate a Fourier filter. Utsing a Kolho-

lnen tirt, a NIFB, a countrproagatl.ion and a hybrid network, data ineasured from

itifrared amid laser radar imagery of mimiltary vehicles is analyzed. The accuracy and

trainiing liles for a NIFI net and a Hybrid net are compared using an aibiguoUis

," dcision region problem. Each classilication problem is examined and coipared to

classical, nearest neighbor pattern recogiiition txliiiques. Using dynamic aniflysis,

neural nietwork printing is Insed to det.ernimie oplilllttn imode coifigulrations. A hybrid

l neural network is developed using Kohlonen training rules for the first hidlel layer

followed by ome or two hidden layers using standard back lpropagtion rules for train-

* iig. Advantage of the hybrid net work is shown for classification prohlems involving

ationiali" caracterti-ic of measured data. The Hybrid network reIUil'es less train- '

ing amid fewer intercoiectionx thani IlFI when classificatiois iivolves aiigimuOs

' derision regions.

.. . .. . -.-........ |/ II


